
D3 as a 2-MCFL

Konstantinos Kogkalidis and Orestis Melkonian

University of Utrecht, The Netherlands
{k.kogkalidis,o.melkonian}@uu.nl

Abstract. We discuss the open problem of parsing the Dyck language
of 3 symbols, D3, using a 2-Multiple Context-Free Grammar. We tackle
this problem by implementing a number of novel meta-grammatical tech-
niques and present the associated software packages we developed.

Keywords: Dyck Language; Multiple context-free grammars (MCFG)

1 Introduction

Multidimensional Dyck languages[6] generalize the well-known pattern of well-
bracketed pairs of parentheses to k-symbol alphabets. Our goal in this paper is
to study the 3-dimensional Dyck language D3, and the question of whether this
is a 2-dimensional multiple context-free language, 2-MCFL.

For brevity’s sake, this section only serves as a brief introductory guide to-
wards relevant papers, where the interested reader will find definitions, properties
and various correspondences of the problem.

1.1 Preliminaries

We use D3 to refer to the Dyck language over the lexicographically ordered
alphabet a < b < c, which generalizes well-bracketed parentheses over three
symbols. Denoting with #x(w) the number of occurrences of symbol x within
word w, any word in D3 satisfies the following conditions:

(D1) #a(w) = #b(w) = #c(w)
(D2) #a(v) ≥ #b(v) ≥ #c(v), ∀v ∈ PrefixOf(w)

Eliding the second condition (D2), we get the MIX language, which represents
free word order over the same alphabet. MIX has already been proven express-
ible by a 2-MCFG[10]; the class of multiple context-free grammars that operate
on pairs of strings[2].

1.2 Motivation

Static Analysis Interestingly, the 2-symbol Dyck language is used in the static
analysis of programming languages, where a large number of analyses are for-
mulated as language-reachability problems[9].



For instance, when considering interprocedural calls as part of the source
language, high precision can only be achieved by examining only control-flow
paths that respect the fact that a procedure call always returns to the site of
its current caller[8]. By associating the program point before a procedure call fk
with (k, and the one after the call with )k, the validity problem is reduced to
recognizing D2 words.

Alas, the 2-dimensional case cannot accommodate richer control-flow struc-
tures, such as exception handling via try/catch and Python generators via the
yield keyword. To achieve this, one must lift the Dyck-reachability problem to
a higher dimension which, given the computational cost that context-sensitive
parsing induces, is currently prohibited. If D3 is indeed a 2-MCFL, parsing it
would become computationally attainable for these purposes and eventually al-
low scalable analysis for non-standard control-flow mechanisms by exploiting
the specific structure of analysed programs, as has been recently done in the
2-dimensional case[1].

Last but not least, future research directions will open up in a multitude of
analyses that are currently restrained to two dimensions, such as program slicing,
flow-insensitive points-to analysis and shape approximation[9].

Linguistics For the characterization of natural language grammars, the ex-
treme degree of scrambling permitted by the MIX language may be considered
overly expressive[3].

On the other hand, the prefix condition of D3 is more suggestive of free
word order still respecting certain linear order constraints, as found in natural
languages. Hence, it is reasonable to examine whether D3 can also be modelled
by a 2-MCFG. Such an endeavour proved quite challenging, necessitating careful
study of correspondences with other mathematical constructs.

1.3 Correspondences

Young Tableaux A standard Young Tableau is defined as an assortment of
n boxes into a ragged (or jagged, i.e. non-rectangular) matrix containing the
integers 1 through n and arranged in such a way that the entries are strictly
increasing over the rows (from left to right) and columns (from top to bottom).
Reading off the entries of the boxes, one may obtain the Yamanouchi word
by placing (in order) each character’s index to the row corresponding to its
lexicographical ordering.

In the case of D3, the Tableau associated with these words is in fact rectan-
gular of size n× 3, and the length of the corresponding word (called a balanced
or dominant Yamanouchi word in this context) is 3n, where n is the number of
occurrences of each unique symbol[6]. Practically, the rectangular shape ensures
constraint (D1), while the ascending order of elements over rows and columns
ensures constraint (D2). In that sense, a rectangular standard Young tableau
of size n × 3 is, as a construct, an alternative way of uniquely representing the
different words of D3. We present an example tableau in Fig.1.



a:
b:
c:

1 3 4 8 9 10
2 5 7 11 13 15
6 12 14 16 17 18

Fig. 1. Young tableau for ”abaabcbaaabcbcbccc”

Promotions and Orbits There is an interesting transformation on Young
Tableaux, namely the Jeu-de-taquin algorithm. When operating on a rectangular
tableau T (n, 3), Jeu-de-taquin consists of the following steps:

(1) Reduce all elements of T by 1 and replace the first item of the first row with
an empty box □(x, y) := (1, 1).

(2) While the empty box is not at the bottom right corner of T, □(x, y) ̸= (n, 3),
do:
- Pick the minimum of the elements directly to the right and below the
empty box, and swap the empty box with it. T (x, y) := min(T(x+1,y), T(x,y+1)),
□(x′, y′) := (x+1, y) (in the case of a right-swap) or □(x′, y′) := (x, y+1)
(in the case of a down-swap).

(3) Replace the empty box with 3n.

The tableau obtained through Jeu-de-taquin on T is called its promotion
p(T ). We denote by pk(T ), k successive applications of Jeu-de-taquin. It has been
proven that p3n(T ) = T [7]. In other words, the promotion defines an equivalence
class, which we name an orbit, which cycles back to itself. Orbits dissect the space
of D3 into disjoint sets, i.e. every word w belongs to a particular orbit, obtained
by promotions of Tw.

A2 Combinatorial Spider Webs The A2 irreducible combinatorial spider web
is a directed planar graph embedded in a disk that satisfies certain conditions[4].
Spider webs can be obtained through the application of a set of rules, known as
the Growth Algorithm[7]. These operate on pairs of neighbouring nodes, collaps-
ing them into a singular intermediate node, transforming them into a new pair or
eliminating them altogether. Growth rules will be examined from a grammatical
perspective in Section 2.2. Upon reaching a fixpoint, the growth process pro-
duces a well-formed Spider Web, which, in the context of D3, can be interpreted
as a visual representation of parsing a word[6,7].

A bijection also links Young Tableaux with Spider Webs. More specifically,
the act of promotion is isomorphic to a combinatorial action on spider webs,
namely web rotation[7].

Constrained Walk A Dyck word can also be visualized as a constrained walk
within the first quadrant of Z2. We can assign each alphabet symbol x a vector
value vx ∈ Z2 such that all pairs of (vx, vy) are linearly independent and:

va + vb + vc = 0 (1)

κva + λvb + µvc ≥ 0, (∀κ ≥ λ ≥ µ) (2)



We can then picture Dyck words as routes starting from (0, 0). (1) means
that each route must also end at (0, 0) (∼= (D1)), while (2) means that the x and
y axes may never be crossed (∼= (D2)). An example walk is depicted in Fig.2.
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Fig. 2. The constrained walk of ”abaabcbaaabcbcbccc” with vector value assignments
va = (1, 0), vb = (−1, 1), vc = (0,−1)

2 Modeling Techniques

We now present a number of novel techniques that we developed as an attempt
to solve the problem at hand, incrementally moving towards more complex and
abstract grammars. For the purpose of experimentation we have implemented
these techniques, based on a software library for parsing MCFGs[5]. The resulting
Python code is open-source and available online1.

2.1 Triple Insertion

To set things off, we start with the grammar of triple insertion in Fig.3. This
grammar operates on non-terminals W(x, y), producing W(x′, y′) with an addi-
tional triplet a, b, c that respects the partial orders x < y and a < b < c. The
end-word is produced through the concatenation of (x, y).

Despite being conceptually simple, this grammar consists of a large number
of rules. Its expressivity is also limited; the prominent weak point is its inability
to manage the effect of straddling, namely the generation of words whose sub-
stituents display complex interleaving patterns. Refer to Fig.10 for an example.

2.2 Meta-Grammars

To address the issue of rule size, we introduce the notion of meta-grammars,
loosely inspired by Van Wijngaarden’s work[11], which allows a more abstract
view of the grammar as a whole. Specifically, we define O as the meta-rule

1 https://github.com/omelkonian/dyck

https://github.com/omelkonian/dyck


S(xy)←W(x, y). (1)

W(ϵ, xyabc)←W(x, y). (2)

...

W(abcxy, ϵ)←W(x, y). (61)

W(ϵ,abc). (62)

...

W(abc, ϵ). (65)

Fig. 3. Grammar of triple insertions

which, given a rule format, a set of partial orders (over the tuple indices of its
premises and/or newly added terminal symbols), and the MCFG dimensionality,
automatically generates all the order-respecting permutations. An example of
how we can abstract away from explicitly enumerating the entirety of our initial
rules is showcased in Fig.4.

S(xy)←W(x, y).

O2JW← ϵ | {a < b < c}K.
O2JW←W | {x < y, a < b < c}K.

Fig. 4. G0: Meta-grammar of triple insertions

This approach enhances the potential expressivity of our grammars as well.
For instance, we can now extend the previous grammar with a single meta-rule
that allows two non-terminals W(x, y), W(z, w) to interleave with one another,
producing rearranged tuple concatenations and allowing some degree of strad-
dling to be generated:

G1 : G0 +O2JW←W,W | {x < y, z < w}K.
The addition of this rule gets us closer to completeness, but we are still not

quite there. We have thus far only used a single non-terminal, not utilizing the
expressivity that an MCFG allows. To that end, we propose non-terminals to
represent incomplete word states; that is, words that either have an extra symbol
or miss one. The former are positive states, whereas the latter are negative. The
inclusion of these extra states would allow for more intricate interactions.

Interestingly, there is a direct correspondence between these non-terminals
and the nodes of Petersen’s growth algorithm[7]. Fig.5 depicts the growth rules
in the exact same web form as proposed by Petersen, modulo node branding. A



subset of these web-reduction rules are, in fact, precisely modelled by the meta-
grammar G2 presented in Fig.6. In section 4, we briefly explain our inability
to model the whole set of rules with a 2-MCFG, hence rendering our grammar
complete.
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Fig. 5. Growth rules

G2 consists of base cases for positive states, possible state interactions, clo-
sures of pairs of inverse polarity and a universally quantified meta-rule that
allows the combination of any incomplete state with a well-formed one (i.e. non-
terminal W).

A further extension can be achieved through universally quantifying the no-
tion of triple insertion, which is unique in the sense that it can insert three
different terminals, each at a different position:

G3 : G2 + ∀ K ∈ {A+/−, B+/−, C+/−} : O2JK← K | {x < y, a < b < c}K.
2.3 Rule Inference

The improved performance of the above approaches again proved insufficient to
completely parse D3. Our meta-rules are over-constrained by imposing a total
order on the tuple elements, due to their inability to keep track of where the
extra character(s) is. To overcome this, we split each state into multiple position-
aware, refined states. Doing so revealed a vast amount of new interactions, as



S(xy)←W(x, y).

O2JW← ϵ | {a < b < c}K.
O2JA+ ← ϵ | {a}K.
O2JB+ ← ϵ | {b}K.
O2JC+ ← ϵ | {c}K.
O2JC− ← A+, B+ | {x < y < z < w}K.
O2JB− ← A+, C+ | {x < y < z < w}K.

O2JA− ← B+, C+ | {x < y < z < w}K.
O2JA+ ← C−, B− | {x < y < z < w}K.
O2JB+ ← C−, A− | {x < y < z < w}K.
O2JC+ ← B−, A− | {x < y < z < w}K.
O2JW ← A+, A− | {x < y < z < w}K.
O2JW ← C−, C+ | {x < y < z < w}K.
∀ K ∈ {A+/−, B+/−, C+/−} :
O2JK← K,W | {x < y, z < w}K.

Fig. 6. G2: Meta-grammar of incomplete states

evidenced by the below alteration to the original A+, B+ interaction (where y
can now occur after z or w):

O2JC− ← A+
left, B

+ | {x < y, x < z < w}K.

In order to accommodate the interactions between this increased number of
states, we need to keep track of both internal and external order constraints.
At this point, the abstraction offered by our meta-grammar approach does not
cover our needs any more. The same difficulty that we had encountered before
is prominent once more, except now at an even higher level.

As a solution to the aforementioned limitation, we propose a system that can
automatically create a full-blown m-MCFG given only the states it consists of.
To accomplish this, we assign each state a unique descriptor that specifies the
content of its tuple’s elements. Aligning these descriptors with the tuple, we can
then infer the descriptor of the resulting tuple of every possible state interaction.
For the subset of those interactions whose resulting descriptor is matched with
a state, we can now automatically infer the rule.

Formally, the system is initialized with a map D, such as the one illustrated
in Fig.7. Its domain, dom(D), is a set of state identifiers and its codomain,
codom(D), is the set of their corresponding state descriptors.



W 7→ (ϵ, ϵ)

A+
l 7→ (a, ϵ)

A+
r 7→ (ϵ, a)

...

C−
r 7→ (ϵ, ab)

C−
l,r 7→ (a, b)

Fig. 7. Map D for refined states

Algorithm 1 ARIS: Automatic Rule Inference System

procedure aris(D)
for X 7→ (d1, . . . , dn) ∈ D do

yield X(d1, . . . , dn).

for X,Y ∈ dom(D)2 do
(Xord, Yord)← (x < y < . . . , z < w < . . . )
for (d1, ..., dn) ∈ O2J ← X,Y | {Xord, Yord}K do

for S′ ∈ eliminate((d1, . . . , dn),D) do
yield S′(d1, . . . , dn)← X,Y.

procedure eliminate((d1, . . . , dn),D)
for matches ∈ all abc triplets(d1, . . . , dn) do

for i ∈ 0 . . . n/3 do
for S′ ∈ remove abc triplets(matches, i) do

if S′ ∈ codom(D) then
yield S′

Meta-grammars accelerated the process of creating grammars, by letting us
simply describe rules instead of explicitly defining them. ARIS builds upon this
notion to raise the level of abstraction even further; one needs only specify a
grammar’s states and its descriptors, thus eliminating the need to define rules
or even meta-rules.

3 Tools & Results

3.1 Grammar Utilities

We have implemented the modelling techniques described in Section 2 and dis-
tributed a Python package, called dyck, which provides the programmer with a
domain-specific language close to this paper’s mathematical notation. To facili-
tate experimentation, our package includes features such as grammar selection,



time measurements, word generation and soundness/completeness checking. The
following example demonstrates the definition of G1:

from dyck import *

G_1 = Grammar([

(’S <- W’, {(x, y)}),

O(’W’, {(a, b, c)}),

O(’W <- W’, {(x, y), (a, b, c)}),

O(’W <- W, W’, {(x, y), (z, w)})

])

3.2 Visualization

As counter-examples began to grow in size and number, we realised the necessity
of a visualization tool to assist us in identifying properties they may exhibit. To
that end, we distribute another Python package, called dyckviz, which allows
the simultaneous visualization of tableau-promotion and web-rotation (grouped
in their corresponding equivalence classes). An example of a web as rendered by
our tool is given in Fig.8.

Young tableaux in an orbit are colour-grouped by their column indices, which
sheds some light on how the jeu-de-taquin actually influences the structure of
the corresponding Dyck words. Interesting patterns have began to emerge, which
still remain to be properly investigated.

3.3 Grammar Comparisons

Fig.9 displays three charts, depicting the number of rules, percentage of counter-
examples and computation times of each of our grammars for D3

n with n ranging
from 2 to 6 (where n denotes the number of abc triplets). Even though none of our
proposed grammars is complete, we observe that as grammars get more abstract,
the number of failing parses steadily declines. This however comes at the cost
of rule size growth, which in turn is associated with an increase in computation
times. What this practically means is that we are unable to continue testing
more elaborate grammars or scale our results to higher orders of n (note that
||D3

n|| also has a very rapid rate of expansion2).

4 Road to Completeness

To our knowledge, no other attempt has come so close to modelling D3 with a
2-MCFG. We attribute this to the combination of a pragmatic approach with
results from existing theoretical work. In this section, we present a collection of
additional ideas, which we consider worthy of further exploration.

2 https://oeis.org/A000108

https://oeis.org/A000108
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Fig. 8. Spider web of ”abaacbbacbabaccbcc”

First-Match Policy and Relinking Possibly the most intuitive way of check-
ing whether a word w is part of D3

n is checking whether a pair of links occur that
match ai to bi and bi to ci ∀i ∈ n. We call this process of matching the first-
match policy. The question arises whether a grammar can accomplish inserting
a triplet of a, b, c, that would abide by the first-match policy. If that were the
case, it would be relatively easy to generalize this ability by induction to every
n ∈ N. Unfortunately, the answer is seemingly negative; the expressiveness pro-
vided by a 2-MCFG does not allow for the arbitrary insertions required. On a
related note, being able to produce a word state W (x, y) where w = xy and x
any possible prefix of w, gives no guarantee of being able to produce the same
word with an extra triplet inserted due to the straddling property.

However, if rules existed that would allow for match-making and breaking,
i.e. match relinking, an inserted symbol could be temporarily matched with what
might be its first match-policy in a local scope, and then relink it to its correct
match when merging two words together.

Growth Rules Although G2 comes close to realizing the growth algorithm, not
all of the growth rules can be translated into a 2-MCFG setting. It would be an
interesting endeavour to attempt to model the element-swapping behaviour of
these rules that produce two output states, without resorting to more expressive
formalisms (e.g. context-sensitive grammars).
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Fig. 10. First-match policy for ”ababacbcabcc”

Insights from promotion An interesting question is whether promotion can
be handled by a 2-MCFG (as a context-free rewriting system). If so, it could
be worth looking into the properties of orbits, to test for instance if there are
promotions within an orbit that can be easier to solve than others. Solving a
single promotion and transducing the solution to all equivalent words could then
be a guideline towards completeness.

5 Conclusion

We tried to accurately present the intricacies of D3 and the difficulties that arise
when attempting to model it as a 2-MCFL. We have developed and introduced
some novel techniques and tools, which we believe can be of use even outside
the problem’s narrow domain. We have largely expanded on the existing tools to
accommodate MIX-style languages and systems of meta-grammars in general.



Despite our best efforts, the question of whether D3 can actually be encap-
sulated within a 2-MCFG still remains unanswered. Regardless, this problem
has been very rewarding to pursue, and we hope to have intrigued the inter-
ested reader enough to further research the subject, use our code, or strive for a
solution on her own.
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