
Formal specification of the Cardano blockchain1

ledger, mechanized in Agda2

Andre Knispel �

Input Output, Global
Orestis Melkonian �

Input Output, Global
3

James Chapman �

Input Output, Global
Alasdair Hill �

Input Output, Global
4

Joosep Jääger �

Input Output, Global
William DeMeo �

Input Output, Global
5

Ulf Norell �

QuviQ, Sweden
6

7

Abstract8

Blockchain systems comprise critical software that handle substantial monetary funds, rendering9

them excellent candidates for formal verification. One of their core components is the underlying10

ledger that does all the accounting: keeping track of transactions and their validity, etc.11

Unfortunately, previous theoretical studies are typically confined to an idealized setting, while12

specifications for real implementations are scarce; either the functionality is directly implemented13

without a proper specification, or at best an informal specification is written on paper.14

The present work expands beyond prior meta-theoretical investigations of the EUTxO model to15

encompass the full scale of the Cardano blockchain: our formal specification describes a hierarchy of16

modular transitions that covers all the intricacies of a realistic blockchain, such as fully expressive17

smart contracts and decentralized governance.18

It is mechanized in a proof assistant, thus enjoys a higher standard of rigor: type-checking prevents19

minor oversights that were frequent in previous informal approaches; key meta-theoretical properties20

can now be formally proven; it is an executable specification against which the implementation in21

production is being tested for conformance; and it provides firm foundations for smart contract22

verification.23

Apart from a safety net to keep us in check, the formalization also provides a guideline for the24

ledger design: one informs the other in a symbiotic way, especially in the case of state-of-the-art25

features like decentralized governance, which is an emerging sub-field of blockchain research that26

however mandates a more exploratory approach.27

All the results presented in this paper have been mechanized in the Agda proof assistant and28

are publicly available. In fact, this document is itself a literate Agda script and all rendered code29

has been successfully type-checked.30

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation31

→ Logic and verification; Theory of computation → Program specifications32

Keywords and phrases blockchain, distributed ledgers, UTxO, Cardano, formal verification, Agda33

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.734

1 Introduction35

This paper gives a high-level overview of the Cardano ledger specification in the Agda proof36

assistant, which is one of three core pieces of the Cardano blockchain:37

Networking: deals with sending messages across the internet.38

Consensus: establishes a common order of valid blocks.39

Ledger: decides whether a sequence of blocks is valid.40

Such separation of concerns is crucial to enable a rigidly formal study of each individual41

component; the ledger is based on the Extended UTxO model (EUTxO), an extension of42

© Andre Knispel;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 7; pp. 7:1–7:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andre.knispel@iohk.io
https://orcid.org/0000-0003-0068-3799
mailto:orestis.melkonian@iohk.io
https://orcid.org/0000-0003-2182-2698
mailto:james.chapman@iohk.io
https://orcid.org/0000-0001-9036-8252
mailto:alasdair.hill@iohk.io
mailto:joosep.jaager@iohk.io
mailto:william.demeo@iohk.io
https://orcid.org/0000-0003-1832-5690
mailto:ulf.norell@quviq.com
https://doi.org/10.4230/OASIcs.FMBC.2024.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 Formal specification of the Cardano blockchain ledger, mechanized in Agda

Bitcoin’s model of unspent transaction outputs [19] – in contrast to Ethereum’s account-based43

model [8] – to accommodate fully expressive smart contracts that run on the blockchain.44

Luckily for us, EUTxO enjoys a well-studied meta-theory [9, 10] that is also mechanized45

in Agda, albeit in a much simpler setting where a single ledger feature is considered at a46

time, but not how multiple concurrent features interact. We take this to the next level by47

scaling up these prior theoretical results to match the complexity of the real world: the48

Cardano blockchain being one of the top ten cryptocurrencies today by market capitalization,49

it handles gigabytes of transactions that transfer hundred of millions US dollars, while50

simultaneously supporting all these features plus many more that have not been formally51

studied before.52

We are happy to report that the formalization overhead has proven minuscule compared53

to the development effort of the actual implementation, measured either by lines of code (˜1054

thousand lines of Agda formalization versus ˜200 thousand of Haskell implementation) or55

by number of man hours put in so far (only a couple of full-time formal methods engineers56

versus tens of production developers). The result is a mechanized document that leaves little57

room for error, additionally proves crucial invariants of the overall system ,e.g., that the58

global value carried by the system stays constant, formally stated in Section 4. It doubles as59

an executable reference implementation that we can utilize in production for conformance60

testing. All of our work, much like this paper, is mechanized in Agda and is publicly available:61

https://github.com/IntersectMBO/formal-ledger-specifications62

Scope. Cardano’s evolution proceeds in eras, each introducing a new vital feature to the63

previous ones. While we would ideally want to provide a multitude of formal artifacts, each64

describing a single era in full detail, the specification formalized here is that of the Voltaire65

era that introduces decentralized governance as described in the Cardano Improvement66

Proposal (CIP) 1694.1 This stems from the fact that the design of the blockchain happens in67

tandem with the formal specification; one informs the other in an intricate, non-linear fashion.68

Thus arises a pragmatic need to think of the process as an act of balance between keeping69

up with the past, i.e., going back to previous eras and incrementally incorporating their70

features, and co-evolving with the current design of the future ledger capabilities. Therefore,71

we set aside details of the previous Byron, Shelley, and Alonzo eras while at the same72

time missing orthogonal features related to smart contracts brought in the Babbage era.73

Transitions as relations. The ledger can itself be conceptually divided into multiple74

sub-components, each described by a transition between states that only contains the relevant75

parts of the overarching ledger state and possibly some internal auxiliary information that is76

discarded at the outer layer. These transitions are not independent, but form a hierarchy77

of “state machines” where some higher-level transition might demand successful transition78

of a sub-component down the dependency graph as one of its premises. Eventually, these79

cascading transitions all get combined to dictate the top-level transition that handles an80

individual block of transactions submitted to the blockchain.81

Formally, we formulate such (labeled) transitions as relations X between the environment82

Γ inherited from a higher layer, an initial state s, a signal b that acts as user input, and a83

final state s′:84

Γ ` s
b−→
X

s′

Environments
(Signals) States

Possible transitions
85

1 https://github.com/cardano-foundation/CIPs/blob/17771640/CIP-1694/README.md

https://github.com/IntersectMBO/formal-ledger-specifications
 https://github.com/cardano-foundation/CIPs/blob/17771640/CIP-1694/README.md

Andre Knispel et al. 7:3

We will henceforth present such transitions as shown on the right; a triptych defining86

environments and possibly signals (top left), states (top right), and the rules that inductively87

define the transition (bottom).88

1.1 Agda preliminaries89

In Agda, the aforementioned ledger transitions are modeled as inductive families of type:90

`⇀L_ M_ : Env → State → Signal → State → Type91

Reflexive transitive closure. We will often need to apply a transition repeatedly until92

we arrive at a final state, which corresponds to the standard mathematical construction of93

taking the relation’s reflexive transitive closure:94

data _`_⇀L_ M∗_ : Env → State → List Signal → State → Type where95

base :

Γ ` s ⇀L [] M∗ s

step :
• Γ ` s ⇀L b M s’
• Γ ` s’ ⇀L bs M∗ s”

Γ ` s ⇀L b :: bs M∗ s”

96

97

Finite sets & maps. One particular trait we inherited from previous pen-and-paper98

iterations of the ledger specification is a heavy use of set theory, which goes against Agda’s99

foundations in Type Theory, both technically and in a philosophical sense. To remedy this,100

we have developed an in-house library for conducting Axiomatic Set Theory within the type-101

theoretic setting of Agda [18]; we stay in its finite fragment for this application. Crucially, the102

type of sets is entirely abstract: there is no way to utilize proof-by-computation (e.g., as one103

would do when modeling sets as lists of distinct elements), so that all proofs eventually resort104

to the axioms and the library’s implementation details stay irrelevant. At the same time,105

when extracting executable code the library provides a properly executable implementation—106

the abstraction layer only exists at compile-time. Implementing this abstraction layer helped107

us greatly reduce code complexity and size over a previous list-based approach. In fact, it is108

highly encouraged to provide multiple implementations without affecting the formalization109

and the validity of the established proofs therein.110

Equipped with the axioms provided by the library, e.g., the ability to construct power111

sets P, it is remarkably easy to define common set-theoretic concepts like set inclusion and112

extensional equality of sets (left), as well as re-purpose sets of key-value pairs to model finite113

maps2 by imposing uniqueness of keys (right):114

⊆ : {A : Type} → P A → P A → Type
X ⊆ Y = ∀ {x} → x ∈ X → x ∈ Y

≈ : {A : Type} → P A → P A → Type
X ≈ Y = X ⊆ Y × Y ⊆ X

⇀ : Type → Type → Type
A ⇀ B = ∃ λ (< : P (A × B)) →
∀ {a b b’} → (a , b) ∈ < → (a , b’) ∈ < → b ≡ b’

115

2 It is natural to think of maps as partial functions, but unrestricted Agda functions would not do here.

FMBC 2024

7:4 Formal specification of the Cardano blockchain ledger, mechanized in Agda

2 Fundamental entities116

2.1 Cryptographic primitives117

There are two types of credentials that can be used on Cardano: VKey and script credentials.118

VKey credentials use a public key signing scheme (Ed25519) for verification. Some serialized119

(Ser) data can be signed, and isSigned is the property that a public VKey signed some data120

with a given signature (Sig). There are also other cryptographic primitives in the Cardano121

ledger, for example KES and VRF used in the consensus layer, but we omit those here.122

Script credentials correspond to a hash of a script that has to be executed by the ledger123

as part of transaction validation. There are two different types of scripts, native and Plutus,124

but the details of this are not relevant for the rest of this paper.125

VKey Sig Ser : Type isSigned : VKey → Ser → Sig → Type126

In the specification, all definitions that require these primitives must accept these as127

additional arguments. To streamline this process, these definitions are bundled into a record128

and, using Agda’s module system, are quantified only once per file. We are using this pattern129

many times, either to introduce additional abstraction barriers or to effectively provide130

foreign functions within a safe environment. Additionally, particularly fundamental interfaces131

like the one presented above are sometimes re-bundled transitively into larger records, which132

further streamlines the interface. This is in stark contrast to the Haskell implementation,133

which often needs to repeat tens of type class constraints on many functions in a module.134

2.2 Addresses135

There are various types of addresses used for storing funds in the UTxO set, which all contain136

a payment Credential and optionally a staking Credential. Addr is the union of all of those137

types. A Credential is a hash of a public key or script, types for which are kept abstract. The138

most common type of address is a BaseAddr which must include a staking Credential.139

There is also a special type of address (not included in Addr) without a payment credential,140

called a reward address. It is not used for interacting with the UTxO set, but instead used141

to refer to reward accounts [31].142

Credential = KeyHash] ScriptHash143

record BaseAddr : Type where
pay : Credential
stake : Credential

record RwdAddr : Type where
stake : Credential144

Addr = BaseAddr] . . .145

2.3 Base types146

The basic units of currency and time are Coin, Slot and Epoch, which we treat as natural147

numbers, while an implementation might use isomorphic but more complicated types (for148

example to represent the beginning of time in a special way).149

Coin = Slot = Epoch = N150

A Coin is the smallest unit of currency, a Slot is the smallest unit of time (corresponding to 1151

second in the main chain), and an Epoch is a fixed number of slots (corresponding to 5 days152

Andre Knispel et al. 7:5

in the main chain). Every slot, a stake pool has a random chance to be able to mint a block,153

and one block every five slots is expected [13].154

3 Advancing the blockchain155

3.1 Protocol parameters156

We start with adjustable protocol parameters. In contrast to constants such as the length of157

an Epoch, these parameters can be changed while the system is running via the governance158

mechanism. They can affect various features of the system, such as minimum fees, maximum159

and minimum sizes of certain components, and more.160

The full specification contains well over 20 parameters, while we only list a few. The161

maximum sizes should be self-explanatory, while a and b are the coefficients of a polynomial162

used in the calculation of the minimum fee for transactions (c.f., function minfee in163

Appendix B).164

record PParams : Type where165

maxBlockSize maxTxSize a b : N166

3.2 Extending the blockchain block-by-block167

CHAIN is the main state machine describing the ledger. Since it is not invoked from any168

other state machine, it does not have an environment. It invokes two other state machines,169

NEWEPOCH and LEDGER*, where the former detects if the new block b is in a new epoch.170

In that case, NEWEPOCH takes care of various bookkeeping tasks, such as counting votes for171

the governance system and updating stake distributions for consensus. For a basic version172

that detects whether a new epoch has been entered, see Appendix C. The potentially updated173

state is then given to LEDGER*, which is the reflexive-transitive closure of LEDGER and174

applies all the transactions in the block in sequence. Finally, CHAIN updates ChainState with175

the resulting states.176

There is a key property about NEWEPOCH, which is that it never gets stuck, i.e. that177

for all states, environments and signals it always transitions to a new state. This property is178

proven in our development.179

record Block : Type where
ts : List Tx
slot : Slot

record NewEpochState : Type where
lastEpoch : Epoch
acnt : Acnt
ls : LState
es : EnactState
fut : RatifyState

record ChainState : Type where
newEpochState : NewEpochState

180

CHAIN :181

• mkNewEpochEnv s ` s .newEpochState ⇀L epoch slot ,NEWEPOCH M nes182

• J slot ⊗ constitution .proj1 .proj2 ⊗ pparams .proj1 ⊗ es K ` nes .ls ⇀L ts ,LEDGER∗ M ls’183
__

184

_ ` s ⇀L b ,CHAIN M updateChainState s nes185

FMBC 2024

7:6 Formal specification of the Cardano blockchain ledger, mechanized in Agda

3.3 Extending the ledger transaction-by-transaction186

Transaction processing is broken down into three separate parts: accounting & witnessing187

(UTXOW), application of certificates (CERT) and processing of governance votes & proposals188

(GOV).189

record LEnv : Type where
slot : Slot
ppolicy : Maybe ScriptHash
pparams : PParams
enactState : EnactState

record LState : Type where
utxoSt : UTxOState
govSt : GovState
certState : CertState

190

LEDGER :191

• mkUTxOEnv Γ ` utxoSt ⇀L tx ,UTXOW M utxoSt’192

• J epoch slot ⊗ pparams ⊗ txvote ⊗ txwdrls K ` certState ⇀L txcerts ,CERT∗ M certState’193

• J txid ⊗ epoch slot ⊗ pparams ⊗ enactState K ` govSt ⇀L txgov txb ,GOV∗ M govSt’194
__

195

Γ ` s ⇀L tx ,LEDGER M J utxoSt’ ⊗ govSt’ ⊗ certState’ K196

(The notation J . . . ⊗ . . . K constructs records of any type by giving their fields in order.)197

4 UTxO198

4.1 Witnessing199

Transaction witnessing checks that all required signatures are present and all required scripts200

accept the validity of the given transaction. witsKeyHashes and witsScriptHashes is the set201

of hashes of keys/scripts included in the transaction.202

UTXOW-inductive :203

• witsVKeyNeeded ppolicy utxo txb ⊆ witsKeyHashes204

• scriptsNeeded ppolicy utxo txb ≡ witsScriptHashes205

• ∀[(vk , σ) ∈ vkSigs] isSigned vk (txidBytes txid) σ206

• ∀[s ∈ scriptsP1] validP1Script witsKeyHashes txvldt s207

• Γ ` s ⇀L tx ,UTXO M s’208
__

209

Γ ` s ⇀L tx ,UTXOW M s’210

4.2 Accounting211

Accounting is handled by the UTXO state machine. The preconditions for UTXO-inductive212

ensure various properties or prevent attacks. For example, if txins was allowed to be empty,213

one could make a transaction that only spends from reward accounts. This does not require a214

specific hash to be present in the transaction body, so such a transaction could be repeatable in215

certain scenarios. The equation between produced and consumed ensures that the transaction216

is properly balanced. For details on some of these functions, see Appendix B.217

Andre Knispel et al. 7:7

record UTxOEnv : Type where
slot : Slot
pparams : PParams

Deposits = DepositPurpose ⇀ Coin

record UTxOState : Type where
utxo : UTxO
deposits : Deposits
fees donations : Coin

218

UTXO-inductive :219

• txins 6≡ ∅220

• txins ⊆ dom utxo221

• minfee pp tx ≤ txfee222

• txsize ≤ maxTxSize pp223

• consumed pp s txb ≡ produced pp s txb224

• coin mint ≡ 0225
__

226

Γ ` s ⇀L tx ,UTXO M

J (utxo | txins) ∪ outs txb
⊗ updateDeposits pp txb deposits
⊗ fees + txfee
⊗ donations + txdonation K

227

I Property 4.1 (Value preservation).228

Let getCoin be the sum of all coins contained within a UTxOState. Then, for all Γ ∈ UTxOEnv,229

s, s’ ∈ UTxOState and tx ∈ Tx, if tx .body .txid /∈ map proj1 (dom (s .UTxOState.utxo))and Γ230

` s ⇀L tx ,UTXO M s’then getCoin s ≡ getCoin s’.231

Note that this is one of the most important properties of a UTxO-based ledger, as232

evidenced by its central place in EUTxO’s meta-theory [9, 10].233

5 Decentralized Governance234

5.1 Entities and actions235

The governance framework has three bodies of governance, the constitutional committee,236

delegated representatives and stake pool operators, corresponding to the roles CC, DRep237

and SPO. Proposals relevant to the governance system come in the form of Governance238

Actions. They are identified by their GovActionID, which consists of the TxId belonging to239

the transaction that proposed it and the index within that transaction (a transaction can240

propose multiple governance actions at once).241

GovActionID = TxId × N242

data GovRole : Type where243

CC DRep SPO : GovRole244

data GovAction : Type where245

NoConfidence : GovAction246

NewCommittee : Credential ⇀ Epoch → P Credential → Q → GovAction247

NewConstitution : DocHash → Maybe ScriptHash → GovAction248

TriggerHF : ProtVer → GovAction249

ChangePParams : PParamsUpdate → GovAction250

TreasuryWdrl : (RwdAddr ⇀ Coin) → GovAction251

Info : GovAction252

For the meaning of these individual actions, see [12].253

FMBC 2024

7:8 Formal specification of the Cardano blockchain ledger, mechanized in Agda

5.2 Votes and proposals254

Before a Vote can be cast it must be packaged together with further information, such as255

who is voting and for which governance action. This information is combined in the GovVote256

record. To propose a governance action, a GovProposal needs to be submitted. Beside the257

proposed action, it requires a deposit, which will be returned to returnAddr.258

data Vote : Type where
yes no abstain : Vote

record GovVote : Type where
gid : GovActionID
role : GovRole
credential : Credential
vote : Vote

record GovProposal : Type where
action : GovAction
deposit : Coin
returnAddr : RwdAddr

259

5.3 Enactment260

Enactment of a governance action is carried out via the ENACT state machine. We just show261

two example rules for this state machine—there is one corresponding to each constructor of262

GovAction. For an explanation of the hash protection scheme, see Appendix A.263

record EnactEnv : Type where
gid : GovActionID
treasury : Coin
epoch : Epoch

record EnactState : Type where
cc : HashProtected (Maybe ((Credential ⇀ Epoch) × Q))
constitution : HashProtected (DocHash × Maybe ScriptHash)
pv : HashProtected ProtVer
pparams : HashProtected PParams
withdrawals : RwdAddr ⇀ Coin

264

Enact-NewConst :265
__

266

J gid ⊗ t ⊗ e K ` s ⇀L NewConstitution dh sh ,ENACT M record s { constitution = (dh , sh) , gid }267

268

Enact-Wdrl :269

let newWdrls = s .withdrawals ∪ wdrl in
∑

[x ← newWdrls] x ≤ t270
__

271

J gid ⊗ t ⊗ e K ` s ⇀L TreasuryWdrl wdrl ,ENACT M record s { withdrawals = newWdrls }272

(The record keyword indicates a record update, i.e. we take the existing EnactState and273

update one of its fields.)274

5.4 Voting and Proposing275

The order of proposals is maintained by keeping governance actions in a list—this acts as a276

tie breaker when multiple competing actions might be able to be ratified at the same time.277

Andre Knispel et al. 7:9

record GovActionState : Type where
votes : (GovRole × Credential) ⇀ Vote
returnAddr : RwdAddr
expiresIn : Epoch
action : GovAction
prevAction : NeedsHash action

GovState = List (GovActionID × GovActionState)

record GovEnv : Type where
txid : TxId
epoch : Epoch
pparams : PParams
enactState : EnactState

278

GOV-Vote :279

• (aid , ast) ∈ fromList s280

• canVote pparams (action ast) role281
__

282

(Γ , k) ` s ⇀L sig ,GOV M addVote s aid role cred v283

284

GOV-Propose :285

• actionWellFormed a ≡ true286

• d ≡ govActionDeposit287
__

288

(Γ , k) ` s ⇀L inj2 prop ,GOV M addAction s (govActionLifetime + epoch) (txid , k) addr a prev289

5.5 Ratification290

Governance actions are ratified through on-chain voting actions. Different kinds of governance291

actions have different ratification requirements but always involve at least two of the three292

governance bodies. The voting power of the DRep and SPO roles is proportional to the stake293

delegated to them, while the constitutional committee has individually elected members294

where each member has the same voting power.295

Some actions take priority over others and, when enacted, delay all further ratification to296

the next epoch boundary. This allows a changed government to reevaluate existing proposals.297

record RatifyEnv : Type where
stakeDistrs : StakeDistrs
currentEpoch : Epoch
dreps : Credential ⇀ Epoch

record RatifyState : Type where
es : EnactState
removed : P (GovActionID × GovActionState)
delay : Bool

298

RATIFY-Accept :299

• accepted Γ es st300

• ¬ delayed action prevAction es d301

• J a .proj1 ⊗ treasury ⊗ currentEpoch K ` es ⇀L action ,ENACT M es’302
__

303

Γ ` J es ⊗ removed ⊗ d K ⇀L a ,RATIFY M304

J es’ ⊗ { a } ∪ removed ⊗ delayingAction action K305

306

RATIFY-Reject :307

• ¬ accepted Γ es st308

• expired currentEpoch st309

FMBC 2024

7:10 Formal specification of the Cardano blockchain ledger, mechanized in Agda

__
310

Γ ` J es ⊗ removed ⊗ d K ⇀L a ,RATIFY M J es ⊗ { a } ∪ removed ⊗ d K311

312

RATIFY-Continue :313

(• ¬ accepted Γ es st • ¬ expired currentEpoch st)314

] (• accepted Γ es st315

• (delayed action prevAction es d316

] (∀ es’ → ¬ J a .proj1 ⊗ treasury ⊗ currentEpoch K ` es ⇀L action ,ENACT M es’)))317
__

318

Γ ` J es ⊗ removed ⊗ d K ⇀L a ,RATIFY M J es ⊗ removed ⊗ d K319

The main new ingredients for the rules of the RATIFY state machine are:320

accepted, which is the property that there are sufficient votes from the required bodies to321

pass this action;322

delayed, which expresses whether an action is delayed;323

expired, which becomes true a certain number of epochs after the action has been proposed.324

The three RATIFY rules correspond to the cases where an action can be ratified and325

enacted (in which case it is), or it is expired and can be removed, or, otherwise it will be326

kept around for the future. This means that all governance actions eventually either get327

accepted and enacted via RATIFY-Accept or rejected via RATIFY-Reject. It is not possible to328

remove actions by voting against them, one has to wait for the action to expire.329

6 Transactions330

A transaction is made up of a transaction body and a collection of witnesses.331

Ix TxId : Type332

TxIn = TxId × Ix333

TxOut = Addr × Value × Maybe DataHash334

UTxO = TxIn ⇀ TxOut335

record TxBody : Type where
txins : P TxIn
txouts : Ix ⇀ TxOut
txfee : Coin
txvote : List GovVote
txprop : List GovProposal
txsize : N
txid : TxId

record TxWitnesses : Type where
vkSigs : VKey ⇀ Sig
scripts : P Script

record Tx : Type where
body : TxBody
wits : TxWitnesses

336

Some key ingredients in the transaction body are:337

A set of transaction inputs (txins), each of which identifies an output from a previous338

transaction. A transaction input (TxIn) consists of a transaction ID and an index to339

uniquely identify the output.340

An indexed collection of transaction outputs (txouts). A transaction output (TxOut) is341

an address paired with a multi-asset Value (see [10]).342

A transaction fee (txfee), whose value will be added to the fee pot.343

Andre Knispel et al. 7:11

The size (txsize) and the hash (txid) of the serialized form of the transaction that was344

included in the block. Cardano’s serialization is not canonical, so any information that is345

necessary but lost during deserialisation must be preserved by attaching it to the data346

like this.347

7 Compiling to a Haskell implementation & Conformance testing348

In order to deliver on our promise that the specification is also executable, there is still some349

work to be done given that all transitions have been formulated as relations.350

This is precisely the reason we also manually prove that each and every transition of the351

previous sections is indeed computational:352

record Computational (_`_⇀L_,X M_ : C → S → Sig → S → Type) : Type where353

compute : C → S → Sig → Maybe S354

compute-correct : compute Γ s b ≡ just s’ ⇔ Γ ` s ⇀L b ,X M s’355

The definition above captures what it means for a (small-step) relation to be accurately356

computed by a function compute, which given as input an environment, source state, and357

signal, outputs the resulting state or an error for invalid transitions. Most importantly, such358

a function must be sound and complete: it does not return output states that are not related,359

and, vice versa, all related states are successfully returned. An alternative interpretation is360

that this rules out non-determinism across all ledger transitions, i.e., there cannot be two361

distinct states arising from the same inputs.362

There is one last obstacle that hinders execution: we have leveraged Agda’s module363

system3 to parameterize our specification over some abstract types and functions that we364

assume as given, e.g., the cryptographic primitives. As a final step, we instantiate these365

parameters with concrete definitions, either by manually providing them within Agda, or366

deferring to the Haskell foreign function interface to reuse existing Haskell ones that have no367

Agda counterpart.368

Equipped with a fully concrete specification and the Computational proofs for each relation,369

it is finally possible to generate executable Haskell code using Agda’s MAlonzo compilation370

backend.4 The resulting Haskell library is then deployed as part of the automated testing371

setup for the Cardano ledger in production, so as to ensure the developers have faithfully372

implemented the specification. This is made possible by virtue of the implementation373

mirroring the specification’s structure to define transitions, which one can then test by374

randomly generating environments/states/signals, and executing both state machines on375

these same random inputs to compare the final results for conformance.376

One small caveat remains though: production code might use different data structures,377

mainly for reasons of performance, which are not isomorphic to those used in the specification378

and might require non-trivial translation functions and notions of equality to perform379

the aforementioned tests. In the future, we plan to also formalize these more efficient380

representations in Agda and prove that soundness is preserved regardless.381

8 Related Work382

EUTxO. The approach we followed is a natural evolution of prior meta-theoretical results383

3 https://agda.readthedocs.io/en/v2.6.4/language/module-system.html#parameterised-modules
4 https://agda.readthedocs.io/en/v2.6.4/tools/compilers.html#ghc-backend

FMBC 2024

 https://agda.readthedocs.io/en/v2.6.4/language/module-system.html#parameterised-modules
 https://agda.readthedocs.io/en/v2.6.4/tools/compilers.html#ghc-backend

7:12 Formal specification of the Cardano blockchain ledger, mechanized in Agda

on the EUTxO model [9, 10], but now employed at a much larger scale to cover all the384

features of a realistic ledger: epochs, protocol parameters, decentralized governance, etc.385

All this complexity does not come for free though: one has to be economical about386

which properties to prove of the resulting system, and this might entail limiting oneself387

to mechanizing just the core properties, such as global value preservation as we saw with388

Property 4.1, otherwise the whole effort can quickly become practically infeasible to maintain389

from a software-engineering perspective.390

Formal Methods, generally. The overarching methodology—formally specifying the391

system under design—is by no means particular to the blockchain space. A principal success392

story in the wider computing world nowadays is definitely the WebAssembly language,393

an alternative to Javascript to act as a compilation target for web applications with394

performance and security in mind [16], which was designed in tandem with a formalization395

of its semantics [29].396

Apart from keeping programming language designers honest by making sure no edge397

cases are overlooked, it allows the language to evolve in a much more robust fashion: every398

future extension has to pass through a rigorous process which eventually involves extending399

the formalization itself.400

While the WebAssembly line of work [29, 30] provided much inspiration for us, we believe401

our approach to be even more radical by mitigating the need for informal processes altogether:402

the formalization is the specification!403

Formal Methods, specifically for blockchain. The work presented here fits well within404

Cardano’s vision for agile formal methods [17], which strikes a good balance between a fully405

certified implementation (too much effort, too few resources) and an informal, under-specified406

product (quicker, easier, but far less trustworthy). Instead of demanding the impossible by407

extracting the actual production from the formalization itself, we find the sweet spot lies in408

the middle: extracting a reference implementation in Haskell and using conformance testing409

to ensure the system in production behaves as it should (c.f., Section 7).410

Apart from our work, there are very few mechanized results on UTxO-based blockchains411

(modeled after Bitcoin [19]), and all of them invariably are formulated on a idealized412

setting [26, 1, 9, 10], abstracting away the complexity that ensues when multiple features413

interact. Thus, the mechanized specification presented here for the Cardano ledger is the414

first of its kind, and we hope this sets a higher standard for subsequent work and pushes415

forward a more formal agenda for blockchain research in the future.416

Although not directly comparable to our use case, account-based blockchains (modeled417

after Ethereum [8]) fair better in this respect, with plenty of formal method tools available,418

ranging from model checking [15, 28] to full-blown formal verification [11, 7, 23]. Notable419

blockchains that spearhead progress in this direction include Tezos [5, 6, 14], Ziliiqa and its420

Scilla smart-contract language [25, 24], and Concordium [3, 21, 2, 27, 20]. The main difference421

with our work lies in readability, partly due to the choice of tool (Agda being notorious for422

its beautiful renderings but lack of proper support for practical “big” proofs that arise in423

large scale software verification projects, where tactic-based proof assistants like Coq [4]424

and Isabelle [22] are more common), and the point where mechanization is placed within425

the development pipeline: most aforementioned work builds upon informal pen-and-paper426

documents and some of its aspects are only mechanized a-posteriori. Having said that,427

the fundamental split stems from a completely different target audience; our formalization428

is meant to be read by researchers, formal methods engineers, compiler engineers, and429

developers alike. In contrast, the majority of the aforementioned work is primarily targeted430

at a select team of experts which complement other (informal) documentation and software.431

Andre Knispel et al. 7:13

9 Conclusion432

We have outlined the mechanized specification of the EUTxO-based ledger rules of the433

Cardano blockchain, by taking a bird’s-eye view of the hierarchy of transitions handling434

different sub-components in a modular way.435

Although space limitations preclude us from exhaustively fleshing out all the gory details436

of our formalization, we hope to have conveyed the general design principles that will be437

helpful to others when attempting to mechanize something of this kind and at this scale.438

In the little space we could afford for more thorough details, we made a conscious choice439

of putting emphasis on the most novel aspect of the current era of the Cardano blockchain:440

decentralized governance. There, the introduction of the notions of voting, ratification, and441

enactment complicate the ledger rules of previous eras—albeit in a fairly orthogonal way,442

which we found particularly satisfying.443

A mechanized formal artifact of this kind is rigid enough to eliminate any ambiguity444

that would often arise in pen-and-paper specifications, all the while sustaining a readable445

document that is accessible to a wide audience and allows for varied uses.446

By virtue of conducting our work within a proof assistant based on constructive logic,447

our result extends beyond a purely theoretical exercise to an executable resource that can be448

leveraged as a reference implementation, against which a system-in-production can be tested449

for conformance.450

Last but not least, it is evident that developing a ledger on these foundations opens up451

a plethora of opportunities for further formalization work, e.g., instantiating the abstract452

notion of scripts with actual Plutus scripts brings us close to enabling practical smart453

contract verification where developers write their programs immediately in Agda, prove454

properties about their behavior, and then extract Plutus code they can deploy to the actual455

Cardano blockchain. All these point to bright prospects for formal methods in UTxO-based456

blockchains, which we are excited to explore in the future and hope that others do as well.457

FMBC 2024

7:14 Formal specification of the Cardano blockchain ledger, mechanized in Agda

References458

1 Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, and Anton Setzer. Verification of459

Bitcoin Script in Agda using weakest preconditions for access control. In Henning Basold,460

Jesper Cockx, and Silvia Ghilezan, editors, 27th International Conference on Types for Proofs461

and Programs, TYPES 2021, June 14-18, 2021, Leiden, The Netherlands (Virtual Conference),462

volume 239 of LIPIcs, pages 1:1–1:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,463

2021. doi:10.4230/LIPIcs.TYPES.2021.1.464

2 Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. Extracting smart465

contracts tested and verified in Coq. In Catalin Hritcu and Andrei Popescu, editors, CPP ’21:466

10th ACM SIGPLAN International Conference on Certified Programs and Proofs, Virtual Event,467

Denmark, January 17-19, 2021, pages 105–121. ACM, 2021. doi:10.1145/3437992.3439934.468

3 Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. Concert: a smart contract469

certification framework in Coq. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings470

of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs ,471

CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 215–228. ACM, 2020.472

doi:10.1145/3372885.3373829.473

4 Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre,474

Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The475

Coq proof assistant reference manual: Version 6.1. PhD thesis, Inria, 1997.476

5 Bruno Bernardo, Raphaël Cauderlier, Guillaume Claret, Arvid Jakobsson, Basile Pesin, and477

Julien Tesson. Making tezos smart contracts more reliable with Coq. In Tiziana Margaria478

and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and479

Validation: Applications - 9th International Symposium on Leveraging Applications of Formal480

Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part III, volume481

12478 of Lecture Notes in Computer Science, pages 60–72. Springer, 2020. doi:10.1007/482

978-3-030-61467-6_5.483

6 Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. Mi-cho-coq,484

a framework for certifying Tezos smart contracts. In Emil Sekerinski, Nelma Moreira, José N.485

Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler,486

José Creissac Campos, Troy Astarte, Laure Gonnord, Antonio Cerone, Luis Couto, Brijesh487

Dongol, Martin Kutrib, Pedro Monteiro, and David Delmas, editors, Formal Methods. FM488

2019 International Workshops - Porto, Portugal, October 7-11, 2019, Revised Selected Papers,489

Part I, volume 12232 of Lecture Notes in Computer Science, pages 368–379. Springer, 2019.490

doi:10.1007/978-3-030-54994-7_28.491

7 Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges492

Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil493

Swamy, et al. Formal verification of smart contracts: Short paper. In Proceedings of the 2016494

ACM Workshop on Programming Languages and Analysis for Security, pages 91–96, 2016.495

8 Vitalik Buterin. A next-generation smart contract and decentralized application platform496

(white paper). https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_497

Whitepaper_-_Buterin_2014.pdf, 2014.498

9 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian,499

Michael Peyton Jones, and Philip Wadler. The Extended UTXO model. In Matthew Bernhard,500

Andrea Bracciali, L. Jean Camp, Shin’ichiro Matsuo, Alana Maurushat, Peter B. Rønne, and501

Massimiliano Sala, editors, Financial Cryptography and Data Security - FC 2020 International502

Workshops, AsiaUSEC, CoDeFi, VOTING, and WTSC, Kota Kinabalu, Malaysia, February503

14, 2020, Revised Selected Papers, volume 12063 of Lecture Notes in Computer Science, pages504

525–539. Springer, 2020. doi:10.1007/978-3-030-54455-3_37.505

10 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann506

Müller, Michael Peyton Jones, Polina Vinogradova, and Philip Wadler. Native custom tokens507

in the Extended UTXO model. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging508

Applications of Formal Methods, Verification and Validation: Applications - 9th International509

https://doi.org/10.4230/LIPIcs.TYPES.2021.1
https://doi.org/10.1145/3437992.3439934
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1007/978-3-030-61467-6_5
https://doi.org/10.1007/978-3-030-61467-6_5
https://doi.org/10.1007/978-3-030-61467-6_5
https://doi.org/10.1007/978-3-030-54994-7_28
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://doi.org/10.1007/978-3-030-54455-3_37

Andre Knispel et al. 7:15

Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,510

October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes in Computer511

Science, pages 89–111. Springer, 2020. doi:10.1007/978-3-030-61467-6_7.512

11 Xiaohong Chen, Daejun Park, and Grigore Roşu. A language-independent approach to smart513

contract verification. In International Symposium on Leveraging Applications of Formal514

Methods, pages 405–413. Springer, 2018.515

12 Jared Corduan, Matthias Benkort, Kevin Hammond, Charles Hoskinson, Andre Knispel, and516

Samuel Leathers. A first step towards on-chain decentralized governance. https://cips.517

cardano.org/cip/CIP-1694, 2023.518

13 Bernardo Machado David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros519

Praos: An adaptively-secure, semi-synchronous proof-of-stake protocol. IACR Cryptology520

ePrint Archive, 2017:573, 2017.521

14 Christopher Goes. Compiling Quantitative Type Theory to Michelson for compile-time522

verification and run-time efficiency in juvix. In Tiziana Margaria and Bernhard Steffen, editors,523

Leveraging Applications of Formal Methods, Verification and Validation: Applications - 9th524

International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes,525

Greece, October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes in Computer526

Science, pages 146–160. Springer, 2020. doi:10.1007/978-3-030-61467-6_10.527

15 Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis528

Smaragdakis. Madmax: Surviving out-of-gas conditions in Ethereum smart contracts.529

Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–27, 2018.530

16 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan531

Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. Bringing the web up to speed with532

WebAssembly. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th533

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI534

2017, Barcelona, Spain, June 18-23, 2017, pages 185–200. ACM, 2017. doi:10.1145/3062341.535

3062363.536

17 Philipp Kant, Kevin Hammond, Duncan Coutts, James Chapman, Nicholas Clarke, Jared537

Corduan, Neil Davies, Javier Díaz, Matthias Güdemann, Wolfgang Jeltsch, Marcin Szamotulski,538

and Polina Vinogradova. Flexible formality: Practical experience with agile formal methods.539

In Aleksander Byrski and John Hughes, editors, Trends in Functional Programming - 21st540

International Symposium, TFP 2020, Krakow, Poland, February 13-14, 2020, Revised Selected541

Papers, volume 12222 of Lecture Notes in Computer Science, pages 94–120. Springer, 2020.542

doi:10.1007/978-3-030-57761-2_5.543

18 Andre Knispel. Constructive zf-style set theory in type theory. unpublished, 2023. URL:544

https://whatisrt.github.io/papers/ZF-style-set-theory-in-type-theory.pdf.545

19 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/en/546

bitcoin-paper, October 2008.547

20 Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters. Formalising decentralised exchanges in548

Coq. In Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic, editors,549

Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and550

Proofs, CPP 2023, Boston, MA, USA, January 16-17, 2023, pages 290–302. ACM, 2023.551

doi:10.1145/3573105.3575685.552

21 Jakob Botsch Nielsen and Bas Spitters. Smart contract interactions in Coq. In Emil Sekerinski,553

Nelma Moreira, José N. Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell, Matt554

Luckcuck, Diego Marmsoler, José Creissac Campos, Troy Astarte, Laure Gonnord, Antonio555

Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib, Pedro Monteiro, and David Delmas,556

editors, Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11,557

2019, Revised Selected Papers, Part I, volume 12232 of Lecture Notes in Computer Science,558

pages 380–391. Springer, 2019. doi:10.1007/978-3-030-54994-7_29.559

22 Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant for560

higher-order logic, volume 2283. Springer Science & Business Media, 2002.561

FMBC 2024

https://doi.org/10.1007/978-3-030-61467-6_7
https://cips.cardano.org/cip/CIP-1694
https://cips.cardano.org/cip/CIP-1694
https://cips.cardano.org/cip/CIP-1694
https://doi.org/10.1007/978-3-030-61467-6_10
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1007/978-3-030-57761-2_5
https://whatisrt.github.io/papers/ZF-style-set-theory-in-type-theory.pdf
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1145/3573105.3575685
https://doi.org/10.1007/978-3-030-54994-7_29

7:16 Formal specification of the Cardano blockchain ledger, mechanized in Agda

23 George Pîrlea and Ilya Sergey. Mechanising blockchain consensus. In June Andronick and562

Amy P. Felty, editors, Proceedings of the 7th ACM SIGPLAN International Conference on563

Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages564

78–90. ACM, 2018. doi:10.1145/3167086.565

24 Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Temporal properties of smart contracts. In566

Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,567

Verification and Validation. Industrial Practice - 8th International Symposium, ISoLA 2018,568

Limassol, Cyprus, November 5-9, 2018, Proceedings, Part IV, volume 11247 of Lecture Notes569

in Computer Science, pages 323–338. Springer, 2018. doi:10.1007/978-3-030-03427-6_25.570

25 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken571

Chan Guan Hao. Safer smart contract programming with Scilla. Proc. ACM Program. Lang.,572

3(OOPSLA):185:1–185:30, 2019. doi:10.1145/3360611.573

26 Anton Setzer. Modelling Bitcoin in Agda. CoRR, abs/1804.06398, 2018. URL: http:574

//arxiv.org/abs/1804.06398, arXiv:1804.06398.575

27 Søren Eller Thomsen and Bas Spitters. Formalizing Nakamoto-style proof of stake. In 34th576

IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25,577

2021, pages 1–15. IEEE, 2021. doi:10.1109/CSF51468.2021.00042.578

28 Petar Tsankov. Security analysis of smart contracts in Datalog. In International Symposium579

on Leveraging Applications of Formal Methods, pages 316–322. Springer, 2018.580

29 Conrad Watt. Mechanising and verifying the WebAssembly specification. In June Andronick581

and Amy P. Felty, editors, Proceedings of the 7th ACM SIGPLAN International Conference on582

Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages583

53–65. ACM, 2018. doi:10.1145/3167082.584

30 Conrad Watt, Maja Trela, Peter Lammich, and Florian Märkl. Wasmref-isabelle: A verified585

monadic interpreter and industrial fuzzing oracle for WebAssembly. Proc. ACM Program.586

Lang., 7(PLDI):100–123, 2023. doi:10.1145/3591224.587

31 Joachim Zahnentferner. Chimeric ledgers: Translating and unifying UTXO-based and account-588

based cryptocurrencies. Cryptology ePrint Archive, Report 2018/262, 2018. URL: https:589

//eprint.iacr.org/2018/262.590

https://doi.org/10.1145/3167086
https://doi.org/10.1007/978-3-030-03427-6_25
https://doi.org/10.1145/3360611
http://arxiv.org/abs/1804.06398
http://arxiv.org/abs/1804.06398
http://arxiv.org/abs/1804.06398
http://arxiv.org/abs/1804.06398
https://doi.org/10.1109/CSF51468.2021.00042
https://doi.org/10.1145/3167082
https://doi.org/10.1145/3591224
https://eprint.iacr.org/2018/262
https://eprint.iacr.org/2018/262
https://eprint.iacr.org/2018/262

Andre Knispel et al. 7:17

A Governance helper calculations591

The design of the hash protection mechanism is elaborated here. The issue at hand is592

that different actions of the same type may override each other, and they allow for partial593

modifications to the state. So if arbitrary actions were allowed to be applied, the system594

may end up in a particular state that was never intended and voted for.595

In the original design of the governance system, the fix for this issue was to allow only a596

single governance action of each type to be enacted per epoch. This restriction is a potentially597

severe limitation and may open the door to some types of attacks.598

The final design instead requires some types of governance actions to reference the ID of599

the parent they are building on, similar to a Merkle tree. Then, in a single epoch the system600

can take arbitrarily many steps down that tree, and since IDs are unforgeable, the system is601

only ever in a state that was publically known prior to voting.602

There are two governance actions where this mechanism is not required, because they603

either commute naturally or they do not actually affect the state. For these it is more604

convenient to not enforce dependencies.605

NeedsHash : GovAction → Type606

NeedsHash NoConfidence = GovActionID607

NeedsHash (NewCommittee _ _ _) = GovActionID608

NeedsHash (NewConstitution _ _) = GovActionID609

NeedsHash (TriggerHF _) = GovActionID610

NeedsHash (ChangePParams _) = GovActionID611

NeedsHash (TreasuryWdrl _) = >612

NeedsHash Info = >613

614

HashProtected : Type → Type615

HashProtected A = A × GovActionID616

617

The two functions adjusting the state in GOV are addVote and addAction.618

addVote inserts (and potentially overrides) a vote made for a particular governance action619

by a credential in a role.620

addAction adds a new proposed action at the end of a given GovState, properly initializing621

all the requiered fields.622

addVote : GovState → GovActionID → GovRole → Credential → Vote → GovState623

addVote s aid r kh v = map modifyVotes s624

where modifyVotes = λ (gid , s’) → gid , record s’625

{ votes = if gid ≡ aid then insert (votes s’) (r , kh) v else votes s’}626

627

addAction : GovState628

→ Epoch → GovActionID → RwdAddr → (a : GovAction) → NeedsHash a629

→ GovState630

addAction s e aid addr a prev = s :: (aid , record631

{ votes = ∅ ; returnAddr = addr ; expiresIn = e ; action = a ; prevAction = prev })632

633

FMBC 2024

7:18 Formal specification of the Cardano blockchain ledger, mechanized in Agda

B UTxO634

Some of the functions used to define the UTXO and UTXOW state machines are defined here;635

inject is the function takes a Coin and turns it into a multi-asset Value [10].636

outs : TxBody → UTxO637

outs tx = mapKeys (tx .txid ,_) (tx .txouts)638

639

minfee : PParams → Tx → Coin640

minfee pp tx = pp .a * tx .body .txsize + pp .b641

642

consumed : PParams → UTxOState → TxBody → Value643

consumed pp st txb644

= balance (st .utxo | txb .txins)645

+ txb .mint646

+ inject (depositRefunds pp st txb)647

648

produced : PParams → UTxOState → TxBody → Value649

produced pp st txb650

= balance (outs txb)651

+ inject (txb .txfee)652

+ inject (newDeposits pp st txb)653

+ inject (txb .txdonation)654

655

credsNeeded : Maybe ScriptHash → UTxO → TxBody → P (ScriptPurpose × Credential)656

credsNeeded p utxo txb657

= map (λ (i , o) → (Spend i , payCred (proj1 o))) ((utxo | txins))658

∪ map (λ a → (Rwrd a , RwdAddr.stake a)) (dom $ txwdrls .proj1)659

∪ map (λ c → (Cert c , cwitness c)) (fromList txcerts)660

∪ map (λ x → (Mint x , inj2 x)) (policies mint)661

∪ map (λ v → (Vote v , GovVote.credential v)) (fromList txvote)662

∪ (if p then (λ {sh} → map (λ p → (Propose p , inj2 sh)) (fromList txprop))663

else ∅)664

where open TxBody txb665

666

witsVKeyNeeded : Maybe ScriptHash → UTxO → TxBody → P KeyHash667

witsVKeyNeeded sh = mapPartial isInj1 ◦2 map proj2 ◦2 credsNeeded sh668

669

scriptsNeeded : Maybe ScriptHash → UTxO → TxBody → P ScriptHash670

scriptsNeeded sh = mapPartial isInj2 ◦2 map proj2 ◦2 credsNeeded sh671

672

C Advancing epochs673

The NEWEPOCH state machine is responsible for detecting epoch changes: either the epoch674

remains unchanged (NEWEPOCH-Not-New), or the immediately next epoch is reached and675

the state is updated subject to some ratification requirements (NEWEPOCH-New).676

Andre Knispel et al. 7:19

NEWEPOCH-New :677

• e ≡ suc lastEpoch678

• record { currentEpoch = e ; treasury = treasury ; GState gState ; NewEpochEnv Γ }679

` J es ⊗ ∅ ⊗ false K ⇀L govSt’ ,RATIFY∗ M fut’680
__

681

Γ ` nes ⇀L e ,NEWEPOCH M J e ⊗ acnt’ ⊗ ls’ ⊗ es ⊗ fut’ K682

683

NEWEPOCH-Not-New :684

e 6≡ suc lastEpoch685
__

686

Γ ` nes ⇀L e ,NEWEPOCH M nes687

688

FMBC 2024

	1 Introduction
	1.1 Agda preliminaries

	2 Fundamental entities
	2.1 Cryptographic primitives
	2.2 Addresses
	2.3 Base types

	3 Advancing the blockchain
	3.1 Protocol parameters
	3.2 Extending the blockchain block-by-block
	3.3 Extending the ledger transaction-by-transaction

	4 UTxO
	4.1 Witnessing
	4.2 Accounting

	5 Decentralized Governance
	5.1 Entities and actions
	5.2 Votes and proposals
	5.3 Enactment
	5.4 Voting and Proposing
	5.5 Ratification

	6 Transactions
	7 Compiling to a Haskell implementation & Conformance testing
	8 Related Work
	9 Conclusion
	A Governance helper calculations
	B UTxO
	C Advancing epochs

