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Introduction. Consensus protocols have been around for a long time [10, 9], but there has
been a surge of interest in the last decade motivated by cryptocurrency and blockchain appli-
cations, where all participants need to agree on a common order of blocks on the chain.

Consensus protocols can be permissioned or permissionless. Nakamoto-style consensus pro-
tocols are permissionless (all participants can be part of the decision procedure) while classical
protocols like BFT are permissioned (a few designated ones make the decision). With the advent
of proof-of-stake blockchains, permissioned protocols can be adapted to work in a blockchain
setting: a committee is formed based on the stake of all participants, which makes all decisions
until a new committee is designated.

BFT protocols follow a pattern of propose and vote, where a leader proposes a block and
other nodes vote for it. When a block gets enough votes it gets notarized; a notarized chain (i.e.
a chain of notarized blocks) is considered finalized when certain protocol-dependent conditions
hold, which guarantees that all participants will agree on it.

There are several formalisations of different consensus protocols in which parts or all of the
protocol and their corresponding safety and liveness properties are proved correct [13, 1, 12].
In this work, we propose an alternative refinement-based approach, where the formalization is
divided into layers. At the most abstract layer we only model the deterministic result of the
consensus protocol (a finalized chain) together with the information we need to prove that the
chain is indeed finalized. The motivation for this is that we want to be able to construct and
verify zero-knowledge (ZK) proofs that a given chain is notarized/final. This means that the
details of how to get to a notarized/final chain are not important at this level of abstraction.

Of course in order to get a finalized chain we will need a concrete protocol, which we
formalize in the next layer. It corresponds to a mechanization of the paper introducing the
protocol informally. Still, one might want to explore more details than the “academic” version
of the paper, e.g., to analyze and optimize performance or include the actual networking, which
should again be studied in an even lower layer of abstraction.

We conduct our work in a mechanized fashion using the Agda proof assistant [11] and
simultaneously develop a new compilation backend to Rust, so that our formal artifact can also
be utilized for conformance testing against an actual blockchain in production.
Framework: an abstract view of BFT protocols. First and foremost, we stay parametric
over an abstract type of transactions so that we can later instantiate that with various ledger
models, but as a starting point we define everything on top of a minimal UTxO-based ledger,
whose meta-theory has already been extensively studied in prior work [3, 2], with the minor
extension that transactions are also allowed to register new committees. Hence, the ledger
state does not only consist of the typical UTxO set of currently unspent outputs, but also the
committees registered thus far.

BFT consensus relies on a subset of the participants, called the ‘committee’, that assigns a
public key to each participant and requires a certain ratio of votes (in the form of signed blocks)
in order to reach agreement, a.k.a. forming a quorum:
record Committee : Type where
field ratio : Float

members : AssocList Pid PublicKey

quorum? : List Vote → Committee → Bool
quorum? vs com =
com .ratio * length (com .members) < length vs

Block verification is formulated as a (labeled) transition system, which builds upon the base
transaction-level transition of the ledger inherited from the underlying ledger model [6, 8].
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data _⊢_—[_]→ᵇ_ : ℕ → Ledger × Hash → Block → Ledger × Hash → Type where
VerifyBlock :

∙ h ≡ b .block .height
∙ T (quorum? (b .votes) com)
∙ ∀[ v ∈ b .votes ] ∃[ pr ∈ com .members ⁉ v .pid ]

T (verify-signature pr (v .signature) b♯)
∙ _ ⊢ l —[ b .block .transactions ]→∗ l′
─────────────────────────────────────────────────
h ⊢ (l , H) —[ b ]→ᵇ (l′ , (H , b♯) ♯)

After proving that this relation is in fact computational, we can extract the expected decision
procedure for verifying blocks.

verify-block : Height → Ledger × Hash → Verifiable-Block → Maybe (Ledger × Hash)

Case study: the Streamlet protocol, mechanized. We have mechanized the Streamlet
protocol [5]; one of the simplest in the BFT literature. As expected, the notions of notariza-
tion (when every block in a chain has votes from the majority) and finalization (when three
consecutive epochs are notarized in sequence, the prefix up to the second block is necessarily
final) are straightforward to make precise given a set of exchanged messages ms:
NotarizedBlock : Block → Type
NotarizedBlock b = length votes ≥ majority
where
votes = filter ((_≟ b) ∘ blockMessage) ms

NotarizedChain : Chain → Type
NotarizedChain = All NotarizedBlock

data FinalizedChain : Chain → Block → Type where
Finalize : ∀ {ch b₁ b₂ b₃} →
∙ NotarizedChain (b₃ ∷ b₂ ∷ b₁ ∷ ch)
∙ b₃ .epoch ≡ suc (b₂ .epoch)
∙ b₂ .epoch ≡ suc (b₁ .epoch)
───────────────────────────────────
FinalizedChain (b₂ ∷ b₁ ∷ ch) b₃

Moreover, the progression of the protocol can naturally be expressed as an inductive step
relation; to save space we just show the expected type and one example step that records a
finalized chain for a node:
data _—→_ : State → State → Type where
FinalizeBlock : ∀ n ch b →
FinalizedChain (s ∙messagesSoFar n) ch b
────────────────────────────────────────
s —→ finalize n ch s

s₀ —→⟨ ReceiveMessage? 𝔹 0 ⟩
s₁ —→⟨ Vote? 𝔹 [] [] ⟩
s₂ —→⟨ AdvanceEpoch ⟩
⋮ ⋮
sₙ₋₁ —→⟨ FinalizeBlock? 𝔸 [ b₆ ⨾ b₅ ⨾ b₂ ] b₇ ⟩
sₙ ∎

Finally, we prove that all involved logical propositions are decidable, thus also producing an
executable specification which can be used to run example traces as shown on the right (details
omitted for brevity, proofs are automatically discharged via proof-by-computation [14]).

This is work in progress and we are currently closing in on a mechanized proof of safety
(otherwise called ‘consistency’): honest nodes always agree on their final chains (up to a prefix).
We have not yet instantiated the general framework outlined above to the Streamlet case due to
some pending decisions w.r.t. finalization, but we are confident that our framework is sufficiently
equipped to cover this in principle.
Future work Next steps include formalizing other BFT protocols — in particular Simplex [4]
and Jolteon [7] — with the hope that our framework sufficiently generalizes over all examples, as
well as extracting executable Rust programs that can then be integrated into more lightweight
methods such as simulation-based testing (particularly useful for properties that are difficult to
formally prove).
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