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1 INTRODUCTION
Blockchain technology has opened a whole array of interesting new applications, such as secure
multi-party computation[2], fair protocol design fair [6] and zero-knowledge proof systems [8].
Nonetheless, bugs in smart contracts – programs that run on the blockchain – have led to sig-
nificant financial losses1, thus it is crucial we can automatically detect them. Moreover, we must
detect them statically, since contracts become immutable once deployed.This is exceptionally hard
though, due to the concurrent execution inherent in smart contracts, which is why most efforts so
far have been on static analysis techniques for particular classes of bugs [5, 9, 10].
Recently there has been increased demand for more rigid formal methods in this domain [11]

and we believe the field would greatly benefit from a language-based, type-driven approach [15]
alongside a mechanized meta-theory. One such example is Scilla, an intermediate language for
smart contracts, with a formal semantics based on communicating automata [14]. Scilla follows
an extrinsic approach to software verification; contracts are written in a simply-typed DSL embed-
ded in Coq [3], and dependent types are used to verify their safety and temporal properties.
In contrast, our work explores a new point in the design space, exploiting the dependent type

system of Agda [12] to encode well-formed contracts, whose behaviour is more predictable and
easier to reason about. To this end, we formalize an idealistic process calculus for Bitcoin smart
contracts, the Bitcoin Modelling Language (BitML) [4]. We give an intrinsically-typed model of
BitML contracts and a small-step semantics of their execution, as well as a game-theoretic symbolic
model that enables reasoning over participant strategies. We have not yet formalized the compiler
from BitML contracts to Bitcoin transactions presented in the original paper, but we hope our work
paves the way to a fully certified compiler.

2 THE BITML CALCULUS
For the sake of brevity, we only give an overview of the major design decisions we made, mostly
focusing on the kind signatures of the basic types along with a representative subset of its con-
structors. The complete formalization is publicly available on Github2.

Basic Types. First, we parametrize our module with the abstract data type of participants,
equippedwith decidable equality and a non-empty set of honest participantsHon. Monetary values
are represented by natural numbers and a Deposit is a Value owned by a Participant .

Contracts. The type of a contract is indexed by the total monetary value it carries and a set
of deposits that guarantee it will not get stuck: data Contract : Value → List Value → Set . Its
constructors comprise the available commands: _⊕_ declares possible branches with equal indices,
split divides the available funds to multiple contracts (whose values must sum to the initial value),
_∶_ requires an authorization by a participant to proceed and after _ : _ allows further execution
of the contract only after some time has passed. Lastly, withdraw transfers all remaining funds to
a given participant and put injects new deposits and secrets to the inner contract:
1https://en.wikipedia.org/wiki/The_DAO_(organization)
2https://github.com/omelkonian/formal-bitml
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put _ reveal _⇒ _ : (vs :Values)→ Secrets → Contract (v+Σvs) vs′ → Contract v (vs′ ++ vs)

A contract is initially made public through an Advertisement , denoted ⟨ G ⟩C , which includes a
contract C along with some preconditions G that have to be met before it is stipulated.

Small-step Semantics. Our reduction semantics consists of transitions between configurations,
which are indexed by assets (List A , List A), whose first and second element represent produced
and required quantities respectively3:
data Conf iдuration′ :Asset ∃Advertisement → Asset ∃Contract → Asset Deposit → Set

A configuration can hold advertisements ‘_, deposits ⟨ _ ,_ ⟩d, contracts ⟨ _ ,_ ⟩c, secrets _∶_ ♯_ and
action authorizations _ [_]. All asset management occurs when composing configuration with the
_ | _ operator; assets required by the right operand can be provided by the left operand. Note that
advertisements and contracts are affine, but deposits are handled linearly (i.e. used only once).
We can now formally define the small-step semantics as a binary relation on closed configu-

rations that do not require any assets, i.e. empty in the second position of the tuple. Instead of
presenting the entirety of the rules, we choose a representative subset instead:
data _−→_ :Conf iдuration ads cs ds→ Conf iдuration ads′ cs′ ds′ → Set where
D-AuthJoin : D-Join :

⟨ A , v ⟩d | ⟨ A , v′ ⟩d | Γ ⟨ A , v ⟩d | ⟨ A , v′ ⟩d | A [0↔1] | Γ
−→ ⟨ A , v ⟩d | ⟨ A , v′ ⟩d | A [0↔1] | Γ −→ ⟨ A , v+ v′ ⟩d | Γ

C-Advertise : Any (_∈ Hon) (participants (G ad))→ (Γ −→ ad | Γ)
C-AuthCommit : (secrets A (G ad) ≡ a₀ . . . aₙ) × (A ∈ Hon → All (_≢ nothing) a i)

→ ‘ad | Γ −→ ‘ad | Γ | . . . ⟨ A : a i ♯N i ⟩ . . . | A [♯▷ ad]

Most rules come in pairs; one rule introduces an authorization of a participant to perform an
action and a subsequent rule performs the action. For instance, a participant can join two of
her deposits by first authorizing the join action (D-AuthJoin) and then actually merging the
two deposits (D-Join). Other rules are a bit more involved, requiring that certain premises are
met before a transition can take place. C-Advertise will advertise a contract with at least one
honest participant to the current configuration and C-AuthCommit authorizes a participant’s
commitment to all secrets mentioned in the advertisement’s precondition, making sure that
honest participants only commit to valid secrets.
In all of the rules above, configuration elements of interest always appear on the left of a com-

position, relying on the fact that (Conf iдuration ,_ |_) forms a commutative monoid. In a machine-
checked setting this is not enough; we have to somehow reorder the input and output configura-
tions. We first define an equivalence _≈_, relating configurations that are equal up to permutation.
We then factor out the equivalence relation in the reflexive transitive closure of the step relation,
which will eventually constitute our equational reasoning device:

data _−→∗ _ :Conf iдuration ads cs ds→ Conf iдuration ads′ cs′ ds′ → Set where
_ −→ ⟨ _ ⟩_ : (L :Conf iдuration ads cs ds) { : L ≈ L′ × M ≈ M ′ }

→ (L′ −→ M ′ )→ (M −→∗ N )→ (L −→∗ N )

Example. Let us give a mechanized derivation for a contract implementing the timed-
commitment protocol [7], where a participant commits to revealing a valid secret a to another
participant, but loses her deposit of B 1 if she does not meet a certain deadline t:
3 We prepend an ∃ to the name of a type to denote that we existentially pack its indices.



Formalizing BitML Calculus in Agda 3

tc-deriv : ⟨ A , 1 ⟩d −→∗ ⟨ A , 1 ⟩d | A∶a ♯6
tc-deriv = let tc = ⟨ A ! 1 ∧A ♯a ⟩ reveal [a]⇒ withdraw A ⊕ after t∶withdraw B in
⟨ A , 1 ⟩d −→⟨ C-Advertise ⟩
‘tc | ⟨ A , 1 ⟩d . . .

⟨ withdraw A , 1 ⟩c | A∶a ♯6 −→⟨ C-Withdraw ⟩
⟨ A , 1 ⟩d | A∶a ♯6 □

First, A holds a deposit of B 1, as required by the advertised contract’s precondition (C-Advertise).
The contract is stipulated after the prerequisites are satisfied and the first branch is picked when
A reveals her secret. Finally, A retrieves the deposit back (C-Withdraw).

Symbolic model. Moving on to the definition of BitML’s symbolic model, we associate a label
to each inference rule and extend the step relation to emit labels, thus defining a labelled transition
system. A multi-step derivation _ −→∗ _ now accumulates a list of labels and essentially models
possible traces of the execution. We can now define participant strategies as functions that, given a
current trace4, select a number of possible next moves that are admissible by the semantics. Since
only a certain class of strategies is considered valid (e.g. the participant cannot authorize actions
by others), we model strategies as dependent record types:
record HonestStrateдy (A : Participant) where
field strategy :Trace → Label

valid : (A ∈ Hon) × (∀ R α→ α ∈ strategy (R ∗)→ authorizers α ⊆ [A]) × . . .
record AdversaryStrateдy (Adv : Participant) where
field strategy :Trace → (∀A→ A ∈ Hon → HonestStrateдy A)→ Label

valid : (Adv < Hon) × . . .
The final choice out of all moves submitted by the honest participants is made by a single adver-
sary, whose strategy additionally takes the honest strategies as input and the chosen action is
subject to another set of conditions (e.g. the adversary cannot delay time for an arbitrary amount
of time). We can now formulate when a trace conforms to a set of strategies, namely when each
step in the derivation is a (valid) adversarial choice over the available honest moves. Lastly,
we prove several meta-theoretical lemmas, e.g. that derivations in the small-step semantics are
preserved even if we strip out sensitive information: ∀ R′ → (R

α−→ R′ )→ (R ∗ α−→ R′ ∗).
Towards certified compilation. In contrast to the compiler proposed in the original BitML

paper, we aim to give a compiler to a more abstract accounting model for ledgers based on un-
spent output transactions (UTxO) [16] and mechanize a similar proof for compilation correctness,
stating that attacks in the compiled contracts can always be observed in the symbolic model. We
already have an Agda formalization for such ledgers5, which statically enforces the validity of their
transactions (e.g. all referenced addresses exist).
Our formalization actually covers extensions to the basic UTxO model of Bitcoin, as employed

by the Cardano blockchain [1]. Since these extensions allow for more expressive power in the
scripts residing in transactions6, we expect the translation to be more straightforward, much like
how the financial DSL Marlowe is implemented on top of an extended-UTxO ledger [13]. Most
importantly, compilation down to our dependently-typed ledgers will guarantee that we only ever
get valid ledgers.

4 Before we give an execution trace as input to a strategy, we traverse the derivation and strip out all secrets using _∗.
5https://github.com/omelkonian/formal-utxo
6 For instance, the addition of data scripts in transaction outputs makes stateful behaviour possible.
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