
Human and machine-readable models of state1

machines for the Cardano ledger2

Andre Knispel
IOG

James Chapman
IOG

3

Orestis Melkonian
IOG & University of Edinburgh, UK

Polina Vinogradova
IOG

4

5

Abstract6

Cardano is a third generation crypto currency developed by IOG whose nodes consist of a network7

layer, a consensus layer, and a ledger layer. The ledger tracks and validates financial transactions.8

The ledger team at IOG has been successful in using a combination of an abstract specification9

of the ledger, modeled as a small-step operational semantics and written in LaTeX, pen-and-paper10

proofs, and property based testing using QuickCheck to support the implementation of this critical11

component of the system. The specification serves as a design document and reference for the12

team, and also other members of the Cardano ecosystem. However, LaTeX provides no scope13

or type checking of the model, and there is a tendency for the spec to get out of sync with the14

rapidly changing implementation. To mitigate both of these problems, and improve on what we15

already have, we are developing a specification in Agda which is both human and machine readable.16

This will provide higher assurance and easier maintenance than the current specification via scope17

and type checking of the current specification. Additionally, we derive a reference implementation18

from this model via meta-programming, which can be used for conformance testing against the19

implementation. Last but not least, we can perform machine checked proofs of key properties.20

2012 ACM Subject Classification Theory of computation → Operational semantics21

Keywords and phrases blockchain, UTXO, ledger, Agda, meta-programming, formal verification22

Funding This work was supported by Input Output (iohk.io) through their funding of the Edinburgh23

Blockchain Technology Lab.24

1 Introduction25

The Cardano ledger is a large state machine, specified by (at the time of writing) four doc-26

uments totaling over 200 pages describing its semantics [2]. One document for the initial27

version of the Shelley ledger, and one for each set of changes that were introduced in various28

hard forks. These specifications are implemented as pure Haskell functions, in an ‘execut-29

able specification’: a Haskell implementation of the formal specification(s) that focuses on30

readability and comparability with its formal counterpart. The original intent was to also31

produce a separate implementation that focuses on performance, sacrificing comparability to32

the formal specification, and testing the implementation against the executable specification.33

This goal has not yet been reached. The executable specification was sufficiently prac-34

tical to be used in production, but further practical improvements caused a gap to develop35

between the formal specification and what has become the production implementation. Ad-36

ditionally, maintaining the same semantics in the formal specification and the executable37

specification/implementation has been challenging in practice, and there have been several38

instances in which changes to one were missing from the other for extended periods of time.39

To remedy these issues we are currently working on a formal model of the Cardano40

ledger in literate Agda[3] that can generate both the formal specification and the executable41

specification from a single source (using Agda’s LaTeX and MAlonzo or agda2hs backends),42

as proposed in [1]. This eliminates any possibility for differing semantics between the formal43

and executable specifications, closing the gap completely. Furthermore, we can conformance44

mailto:andre.knispel@iohk.io
mailto:james.chapman@iohk.io
mailto:orestis.melkonian@ed.ac.uk
mailto:polina.vinogradova@iohk.io

2 Human and machine-readable models of state machines for the Cardano ledger

test the implementation against the executable specification using property based testing,45

ensuring that the specification and implementation remain in sync. The model should be46

as close to the original formal specifications as possible in terms of the generated LaTeX47

document, while of course matching their semantics exactly. The formal specifications are48

written using small-step operational semantics and set theory, which in our experience works49

well in practice. This does lead to some friction with Agda’s type theoretic foundations. For50

example, the relations in the formal specifications are not computable a-priori. We are using51

Agda’s reflection mechanism to derive computable functions from these relations, together52

with proofs of their correctness.53

2 General framework & reflection mechanisms54

The semantics of the ledger and its parts are given by 4-ary relations of the form

STS ⊆ C × S × Sig × S

where C, S, Sig are the sets of contexts, states, and signals respectively. As an example,55

the context could hold some fee-related parameters, the state could hold the set of unspent56

transaction outputs or accounts, and the signal could be blocks or transactions. These57

relations are usually composed with other relations (in various ways) to ultimately form the58

CHAIN relation, which models the semantics of block application to the ledger state.59

To generate an executable specification from these relations, we require a computable60

function that produces a new state (or an error) given a context, signal and initial state,61

such that the function maps its inputs to a non-error output state if and only if the given62

relation holds on these four values. In Agda, we express this using the following record:63

record Computational (STS : C → S → Sig → S → Set) : Set where64

field compute : C → S → Sig → Maybe S65

correct : compute c s sig ≡ just s ⇔ STS c s sig s66

Essentially, a member of Computational STS is a pair of such a compute function, together67

with a proof of its correctness. Given that such a relation STS is Computational, we prove68

three key properties:69

STS is right-unique, i.e. given its first three arguments, there is at most one fourth70

argument making the relation hold.71

Any other correct implementation is (extensionally) equal to compute.72

If equality for states is decidable, the entire relation STS is decidable.73

The second property is particularly important for the executable specification: it means74

that for the semantics of an executable specification, it does not matter how compute, or75

Computational STS were defined, only that there is a definition for it.76

As an example, we could define the following relation1:77

data _⊢_⇀L_,UTXOM_ : N → UTxO × N → Tx → UTxO × N → Set where78

UTXO-inductive : let f = txfee tx in79

· txins tx ̸= ∅ · txins tx ⊆ dom utxo80

· minFee ≤ f · balance (txins tx ◁ utxo) ≡ balance (outs tx) + f81

82

minFee ⊢ (utxo , fees) ⇀L tx ,UTXOM ((txins tx ⋪ utxo) ∪ outs tx , fees + f)83

1 The horizontal line, as well as the dots ·, simply denote function arrows.

A. Knispel and J. Chapman and O. Melkonian and P. Vinogradova 3

This is a simple model of a UTxO ledger with a fixed minimum fee per transaction that is84

paid into a fee pot. If all the properties above the line hold, the relation below the line is85

defined to hold. This suggests a general method of implementing compute: match the inputs86

to the function to the corresponding patterns given below the line. Then, check whether all87

the properties above the line hold, and if so return the new state as given below the line,88

otherwise return an error.89

This assumes that there is only a single possible derivation for the relation, and that90

all variables appearing in the derivation already appear in the first three arguments of the91

conclusion. The latter is always satisfied in our formal specifications, but not the former. If92

there are multiple possible derivations, one can simply try all of them in some order until93

one of them succeeds, or fail otherwise. However, the correctness proof of this function then94

needs to show that the order in which the branches are tried does not matter.95

This approach has been mechanized, and to derive a proof that the previous example is96

Computational one can simply write the following line of code:97

unquoteDecl Computational-UTXO = deriveComp (quote _⊢_⇀L_,UTXOM_) Computational-UTXO98

Compiling this to Haskell yields an executable model for conformance testing.99

3 Problems & future work100

This is still early work. Currently, our model only contains a rule for UTxO accounting101

similar to the above example, and a simple rule for witnessing, which only form small parts102

of the existing ledger. It also contains a proof that the total value in the system is conserved,103

and some automation that generates an executable specification.104

There is some friction resulting from our use of set theory. We need a substancial amount105

of constructions and facts about finite sets, but expressivity is also an issue. Not all con-106

structions we use in functions in the formal specifications are automatically computable, and107

Agda’s syntax mechanism is not powerful enough to express some of the set comprehensions108

we use in the formal specification. This forces us to either find notations that are reasonably109

close to the original ones that do work in Agda, or to introduce differences in how things110

look in the code and LaTeX, which then has the potential to introduce semantic differences.111

Another issue that is out of reach in Agda is vertical vectors. In the example UTXO112

transition above horizontal vectors are still fine, but there are many examples that are more113

complicated and difficult to read without vertical notation. This means we will need to use114

pre-processing or some other method to render the vectors vertically in the LaTeX output.115

References116

1 Philipp Kant, Kevin Hammond, Duncan Coutts, James Chapman, Nicholas Clarke, Jared117

Corduan, Neil Davies, Javier Díaz, Matthias Güdemann, Wolfgang Jeltsch, Marcin Szamotul-118

ski, and Polina Vinogradova. Flexible formality practical experience with agile formal methods.119

In Trends in Functional Programming - 21st International Symposium, TFP 2020, Krakow,120

Poland, February 13-14, 2020, Revised Selected Papers, volume 12222 of Lecture Notes in121

Computer Science, pages 94–120. Springer, 2020. doi:10.1007/978-3-030-57761-2_5.122

2 IOHK Formal Methods Team. Cardano ledger. URL: https://github.com/123

input-output-hk/cardano-ledger.124

3 IOHK Formal Methods Team. Formal ledger specifications. URL: https://github.com/125

input-output-hk/formal-ledger-specifications.126

https://doi.org/10.1007/978-3-030-57761-2_5
https://github.com/input-output-hk/cardano-ledger
https://github.com/input-output-hk/cardano-ledger
https://github.com/input-output-hk/cardano-ledger
https://github.com/input-output-hk/formal-ledger-specifications
https://github.com/input-output-hk/formal-ledger-specifications
https://github.com/input-output-hk/formal-ledger-specifications

	1 Introduction
	2 General framework & reflection mechanisms
	3 Problems & future work

