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Introduction. Consensus protocols for distributed systems ensure that all participants agree
on some state, which is often realised as a common order of blocks on a chain. They are at
the core of blockchain technology, where any mistake in the protocol design or implementation
could result in huge economic losses. Therefore, it is of utmost importance to provide strong
guarantees of its correctness.

At the same time, the area of consensus protocols is rapidly moving, as evidenced by the
amount of new and improved protocols that have appeared in the last few years [4, 9, 6, 3, 1, 5,
to cite a few]. Hence, it might not be possible to aim both for a complete formally proven
implementation and stay at the forefront of technological development. A good compromise
is to formally verify the design of the protocol, and use this formalization as an oracle for
testing. The formalization becomes the ground truth, and all implementations should follow it.
However, this approach entails an additional requirement: the formalization should be readable
by engineers which might not be well versed in the formalization language or its abstractions.

We present a formalization of the Jolteon consensus protocol [6], a modern consensus pro-
tocol of the BFT (Byzantine Fault Tolerance) family [2], and we mechanize its proof of safety.
Safety for a consensus protocol means that consistency is always maintained (i.e. there are no
diverging chains). The formalization is written with readability in mind, and aims to stay close
to the paper description. All of our results are mechanized in the Agda proof assistant [7].

A formal definition of the Jolteon protocol. We present a readable Agda specification
of the Jolteon consensus protocol [6], with the aim of mechanizing its pen-and-paper proofs
of important properties such as safety, as well as having a rigid ground truth against which we
can test actual implementations.

First, we assume the usual cryptographic primitives (hash functions, signatures) and the
BFT-specific setup of a fixed number n of replicas/participants which contains an honest ma-
jority [2]. Our further formal development is parameterised over these assumptions.

Each participant, honest or not, has an identifier Pid = Fin n.
The description of the protocol takes the form of a binary step relation that formally ex-

presses valid transitions between states of the global system. This global level mostly deals
with generic scaffolding that every BFT consensus protocol would have to provide, such as the
message-passing Deliver rule that enables communication between participants, the WaitUntil
rule that advances time (as long as it does not break the assumption of the underlying net-
work model of message delays having an upper bound Δ), and the DishonestStep rule which
gives dishonest participants freedom to send any message as long as it doesn’t involve forging
signatures.

data _—→_ (s : GlobalState) : GlobalState → Type where
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Deliver : ∀ {tm} →
tm ∈ s .networkBuffer
──────────────────────
s —→ deliverMsg s tm

WaitUntil : ∀ t →
∙ All (λ (t′ , _) → t ≤ t′ + Δ) (s .networkBuffer)
∙ currentTime s < t
─────────────────────────────────
s —→ record s { currentTime = t }

DishonestStep : ∀ m →
∙ NoSignatureForging m s
──────────────────────
s —→ broadcast m s

…

Apart from handling the message-passing aspect of the network, the global state also keeps
track of each honest replica’s local state, which contains all protocol-specific information such
as the current round, the most recent certificate the replica has seen, etc. The behaviour of
honest replicas is modelled with another step relation where the specific rules of the protocol
manifest, such as how each epoch’s honest leader proposes a block, or under which conditions
a replica considers a chain to be final:

data _⦂_⊢_—_—→_ (p : Pid) (t : Time) (ls : LocalState) : Maybe Message → LocalState → Type where
ProposeBlock : ∀ txs →
let L = roundLeader (ls .r-cur)

b = mkBlockForState ls txs
m = Propose (sign L b)

in
∙ p ≡ L
─────────────────────────
p ⦂ t ⊢ ls — just m —→ ls

Commit : ∀ b b′ ch →
∙ b -certified-∈- ls .db
∙ b′ -certified-∈- ls .db
∙ (b′ ∷ b ∷ ch) ∙∈ ls .db
∙ length ch > length (ls .final)
∙ b′ .round ≡ 1 + b .round
──────────────────────────────────────────────
p ⦂ t ⊢ ls — nothing —→ record ls {final = b ∷ ch}

…

Proving safety. Taking the reflexive-transitive closure of the global step relation —→ above
leads to a notion of execution trace for such a protocol. That way, we can prove state invariants
that hold for every reachable state in those traces, that is all states for which there is a valid
sequence of steps from the initial state.

Once we have proven several state invariants, e.g. expressing a certain connection between
different pieces of the state, we were able to faithfully transcribe the original paper proof of
safety (otherwise known as consistency) in Agda. Safety states that two honest participants
never have diverging chains that they both consider final:

safety : ∀ s b p b′ p′ →
∙ Reachable s
∙ b ∈ (s ＠ p) .final
∙ b′ ∈ (s ＠ p′) .final
───────────────────────
(b ←—∗ b′) ⊎ (b′ ←—∗ b)

Testing. We further prove several decidability results in Agda about all the logical construc-
tions we used thus far to define the protocol, such as the chain finalization conditions.

The purpose of these proofs is two-fold. First, they allow us to construct and type-check
example traces without manually providing proofs for each rule hypothesis, since our model
is computable and therefore one can leverage proof-by-computation [8] to automate proofs on
closed examples that contain no variables.
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Moreover, once extracted/compiled to a target general-purpose language, these proofs of
decidability become decision procedures that can be utilised by a conformance testing pipeline
that aims to ensure that a given replica’s protocol implementation conforms to the formal
specification.

Future work. We plan to proceed with also proving liveness, a crucial property to ensure
the protocol makes progress in a timely fashion. Apart from having to model some additional
aspects that relate to the notion of time, we expect the methodology we previously employed
for safety to also extend adequately to liveness.

Finally, we plan to investigate different testing approaches (e.g. testing a local honest replica
against the local step relation versus testing the whole testing environment against the global
step relation), as well as variants of the protocol that have more optimal characteristics which
we would prove “equivalent” to the original protocol (i.e. the original properties of safety and
liveness still hold in the optimized protocol).
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