
Mechanized safety of Jolteon consensus in Agda
Orestis Melkonian, Mauro Jaskelioff, and James Chapman

Input Output, Global (IOG)

Introduction. Consensus protocols for distributed systems ensure that all participants agree
on some state, which is often realised as a common order of blocks on a chain. They are at
the core of blockchain technology, where any mistake in the protocol design or implementation
could result in huge economic losses. Therefore, it is of utmost importance to provide strong
guarantees of its correctness.

At the same time, the area of consensus protocols is rapidly moving, as evidenced by the
amount of new and improved protocols that have appeared in the last few years [4, 9, 6, 3, 1, 5,
to cite a few]. Hence, it might not be possible to aim both for a complete formally proven
implementation and stay at the forefront of technological development. A good compromise
is to formally verify the design of the protocol, and use this formalization as an oracle for
testing. The formalization becomes the ground truth, and all implementations should follow it.
However, this approach entails an additional requirement: the formalization should be readable
by engineers which might not be well versed in the formalization language or its abstractions.

We present a formalization of the Jolteon consensus protocol [6], a modern consensus pro-
tocol of the BFT (Byzantine Fault Tolerance) family [2], and we mechanize its proof of safety.
Safety for a consensus protocol means that consistency is always maintained (i.e. there are no
diverging chains). The formalization is written with readability in mind, and aims to stay close
to the paper description. All of our results are mechanized in the Agda proof assistant [7].

A formal definition of the Jolteon protocol. We present a readable Agda specification
of the Jolteon consensus protocol [6], with the aim of mechanizing its pen-and-paper proofs
of important properties such as safety, as well as having a rigid ground truth against which we
can test actual implementations.

First, we assume the usual cryptographic primitives (hash functions, signatures) and the
BFT-specific setup of a fixed number n of replicas/participants which contains an honest ma-
jority [2]. Our further formal development is parameterised over these assumptions.

Each participant, honest or not, has an identifier Pid = Fin n.
The description of the protocol takes the form of a binary step relation that formally ex-

presses valid transitions between states of the global system. This global level mostly deals
with generic scaffolding that every BFT consensus protocol would have to provide, such as the
message-passing Deliver rule that enables communication between participants, the WaitUntil
rule that advances time (as long as it does not break the assumption of the underlying net-
work model of message delays having an upper bound Δ), and the DishonestStep rule which
gives dishonest participants freedom to send any message as long as it doesn’t involve forging
signatures.

data _—→_ (s : GlobalState) : GlobalState → Type where

Mechanizing the Jolteon consensus protocol in Agda O.Melkonian, M.Jaskelioff, J.Chapman

Deliver : ∀ {tm} →
tm ∈ s .networkBuffer
──────────────────────
s —→ deliverMsg s tm

WaitUntil : ∀ t →
∙ All (λ (t′ , _) → t ≤ t′ + Δ) (s .networkBuffer)
∙ currentTime s < t
─────────────────────────────────
s —→ record s { currentTime = t }

DishonestStep : ∀ m →
∙ NoSignatureForging m s
──────────────────────
s —→ broadcast m s

…

Apart from handling the message-passing aspect of the network, the global state also keeps
track of each honest replica’s local state, which contains all protocol-specific information such
as the current round, the most recent certificate the replica has seen, etc. The behaviour of
honest replicas is modelled with another step relation where the specific rules of the protocol
manifest, such as how each epoch’s honest leader proposes a block, or under which conditions
a replica considers a chain to be final:

data _⦂_⊢_—_—→_ (p : Pid) (t : Time) (ls : LocalState) : Maybe Message → LocalState → Type where
ProposeBlock : ∀ txs →
let L = roundLeader (ls .r-cur)

b = mkBlockForState ls txs
m = Propose (sign L b)

in
∙ p ≡ L
─────────────────────────
p ⦂ t ⊢ ls — just m —→ ls

Commit : ∀ b b′ ch →
∙ b -certified-∈- ls .db
∙ b′ -certified-∈- ls .db
∙ (b′ ∷ b ∷ ch) ∙∈ ls .db
∙ length ch > length (ls .final)
∙ b′ .round ≡ 1 + b .round
──
p ⦂ t ⊢ ls — nothing —→ record ls {final = b ∷ ch}

…

Proving safety. Taking the reflexive-transitive closure of the global step relation —→ above
leads to a notion of execution trace for such a protocol. That way, we can prove state invariants
that hold for every reachable state in those traces, that is all states for which there is a valid
sequence of steps from the initial state.

Once we have proven several state invariants, e.g. expressing a certain connection between
different pieces of the state, we were able to faithfully transcribe the original paper proof of
safety (otherwise known as consistency) in Agda. Safety states that two honest participants
never have diverging chains that they both consider final:

safety : ∀ s b p b′ p′ →
∙ Reachable s
∙ b ∈ (s ＠ p) .final
∙ b′ ∈ (s ＠ p′) .final
───────────────────────
(b ←—∗ b′) ⊎ (b′ ←—∗ b)

Testing. We further prove several decidability results in Agda about all the logical construc-
tions we used thus far to define the protocol, such as the chain finalization conditions.

The purpose of these proofs is two-fold. First, they allow us to construct and type-check
example traces without manually providing proofs for each rule hypothesis, since our model
is computable and therefore one can leverage proof-by-computation [8] to automate proofs on
closed examples that contain no variables.

Mechanizing the Jolteon consensus protocol in Agda O.Melkonian, M.Jaskelioff, J.Chapman

Moreover, once extracted/compiled to a target general-purpose language, these proofs of
decidability become decision procedures that can be utilised by a conformance testing pipeline
that aims to ensure that a given replica’s protocol implementation conforms to the formal
specification.

Future work. We plan to proceed with also proving liveness, a crucial property to ensure
the protocol makes progress in a timely fashion. Apart from having to model some additional
aspects that relate to the notion of time, we expect the methodology we previously employed
for safety to also extend adequately to liveness.

Finally, we plan to investigate different testing approaches (e.g. testing a local honest replica
against the local step relation versus testing the whole testing environment against the global
step relation), as well as variants of the protocol that have more optimal characteristics which
we would prove “equivalent” to the original protocol (i.e. the original properties of safety and
liveness still hold in the optimized protocol).

References
[1] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. 10 2017. doi:10.48550/

arXiv.1710.09437.
[2] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Margo I. Seltzer and

Paul J. Leach, editors, Proceedings of the Third USENIX Symposium on Operating Systems Design
and Implementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999, pages 173–186.
USENIX Association, 1999. URL: https://dl.acm.org/citation.cfm?id=296824.

[3] Benjamin Y. Chan and Rafael Pass. Simplex consensus: A simple and fast consensus proto-
col. In Guy N. Rothblum and Hoeteck Wee, editors, Theory of Cryptography - 21st Interna-
tional Conference, TCC 2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings,
Part IV, volume 14372 of Lecture Notes in Computer Science, pages 452–479. Springer, 2023.
doi:10.1007/978-3-031-48624-1_17.

[4] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous blockchain.
IACR Cryptol. ePrint Arch., 2018:981, 2018. URL: https://api.semanticscholar.org/CorpusID:
53238268.

[5] Isaac Doidge, Raghavendra Ramesh, Nibesh Shrestha, and Joshua Tobkin. Moonshot: Optimizing
chain-based rotating leader bft via optimistic proposals, 2024. URL: https://arxiv.org/abs/
2401.01791, arXiv:2401.01791.

[6] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun
Xiang. Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback. In Ittay
Eyal and Juan A. Garay, editors, Financial Cryptography and Data Security - 26th International
Conference, FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers, volume 13411 of Lecture
Notes in Computer Science, pages 296–315. Springer, 2022. doi:10.1007/978-3-031-18283-9_14.

[7] Ulf Norell. Dependently typed programming in Agda. In International School on Advanced Func-
tional Programming, pages 230–266. Springer, 2008.

[8] Paul Van Der Walt and Wouter Swierstra. Engineering proof by reflection in Agda. In Symposium
on Implementation and Application of Functional Languages, pages 157–173. Springer, 2012.

[9] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC ’19, page 347–356, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3293611.3331591.

https://doi.org/10.48550/arXiv.1710.09437
https://doi.org/10.48550/arXiv.1710.09437
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1007/978-3-031-48624-1_17
https://api.semanticscholar.org/CorpusID:53238268
https://api.semanticscholar.org/CorpusID:53238268
https://arxiv.org/abs/2401.01791
https://arxiv.org/abs/2401.01791
http://arxiv.org/abs/2401.01791
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1145/3293611.3331591

