
Program logics for ledgers1

Orestis Melkonian2

University of Edinburgh, Scotland3

Input Output, Global4

Wouter Swierstra5

Utrecht University, The Netherlands6

James Chapman7

Input Output, Global8

Abstract9

Distributed ledgers nowadays manage substantial monetary funds in the form of cryptocurrencies10

such as Bitcoin, Ethereum, and Cardano. For such ledgers to be safe, operations that add new11

entries must be cryptographically sound—but it is less clear how to reason effectively about such12

ever-growing linear data structures.13

This paper views distributed ledgers as computer programs, that, when executed, transfer funds14

between various parties. As a result, familiar program logics, such as Hoare logic and separation15

logic, can be defined in this novel setting. Borrowing ideas from concurrent separation logic, this16

enables modular reasoning principles over arbitrary fragments of any ledger.17

All the results presented in this paper have been mechanised in the Agda proof assistant and18

are publicly available.19

2012 ACM Subject Classification Theory of computation → Program reasoning; Theory of com-20

putation → Separation logic21

Keywords and phrases blockchain, distributed ledgers, UTxO, Hoare logic, separation logic, pro-22

gram semantics, formal verification23

Digital Object Identifier 10.4230/LIPIcs...24

Funding Orestis Melkonian: This work was supported by Input Output (iohk.io) through their25

funding of the Edinburgh Blockchain Technology Lab.26

1 Introduction27

Ledger-based cryptocurrencies manage large amounts of money and record monetary trans-28

fers in copious detail. The market capitalisation of the top ten cryptocurrencies is currently29

valued at over 750B USD. The underlying blockchain that records transactions, gigabytes in30

size, is an ever growing linear data structure. On the Cardano blockchain alone, transactions31

valuing over 300M USD are recorded every day. How could we ever hope to reason about32

such colossal and monolithic data structures?33

To answer this question, this paper shows how familiar programming logics can be ad-34

apted to enable effective and modular reasoning about ledger-based financial transactions.35

Just as imperative programs mutate computer memory, financial transactions mutate bank36

accounts. Hoare logic and separation logic enable us to rigorously prove the correctness of37

computer programs. Surprisingly—as this paper demonstrates—these logics can be adap-38

ted to reason about the financial transactions stored on a ledger with the same degree of39

confidence. To this end, this paper makes the following novel contributions:40

First and foremost, we show how the financial transactions stored in a ledger form a41

simple programming language. We present denotational, operational, and axiomatic42

semantics of account-based ledgers (Section 2), together with a separation logic that43

enables modular reasoning over ledger fragments (Section 3). The separation logic that44

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:orestis.melkonian@ed.ac.uk
https://orcid.org/0000-0003-2182-2698
mailto:w.s.swierstra@uu.nl
https://orcid.org/0000-0002-0295-7944
mailto:james.chapman@iohk.io
https://orcid.org/0000-0001-9036-8252
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Program logics for ledgers

arises in this context, however, turns out to be subtly different, yet strictly more general45

than the typical logics used to reason about computer programs.46

We show how these same semantics—denotational, operational, and axiomatic—can be47

given for blockchain ledgers (Section 4), in particular ones based on the unspent trans-48

action outputs (or UTxO) model, such as Bitcoin [20] and Cardano [6]. Separation logic,49

however, poses more of a challenge as the hash-based nature of the UTxO model adds50

new side conditions to the frame rule that were not necessary for account-based ledgers.51

To address this problem, we propose a novel variant of UTxO, dubbed Abstract UTxO. In52

contrast to regular UTxO, our Abstract UTxO model supports compositional reasoning53

using separation logic without further side conditions (Section 5). The resulting logic54

enables us to reason locally and safely about a limited number of transactions, sprinkled55

arbitrarily throughout a larger ledger.56

All the definitions and theorems presented in this paper have been mechanised in Agda and57

are publicly available:58

https://omelkonian.github.io/hoare-ledgers.59

We use traditional mathematical notation rather than “literate programming” style. The60

proofs themselves are typically quite simple— the hard work is in finding the definitions61

that make them so.62

2 Ledgers & Semantics63

To start things off, we give a formal definition of the syntax and semantics of a simple ledger.64

This illustrates one of the key ideas underlying our work, applying programming language65

theory in a novel domain. For the sake of simplicity, we assume a fixed set of participants P.66

Each participant may spend or receive funds. At any given point in time, we can model the67

state of all the participants’ accounts as a (finite) map, mapping each participant to their68

current balance:69

S := P 7→ Z70

Note that this model allows negative account balances; typically, however, we would only71

allow non-negative balances or at least put a bound to the amount of debt an account can72

accrue. This decision was made mainly for pedagogical purposes—we revisit this choice in73

the next section.74

We will treat a finite map σ as a function from keys to values for simplicity, retrieving a75

key k with σ(k) and constructing a new map with anonymous λ-functions.76

A ledger records the history of transfers between accounts, which we can represent as a77

list of transactions of the form:78

Alice pays Bob 5;79

Alice pays Carroll 10;80

Dana pays Alice 2;81

...82

We can view such a ledger as a program, describing updates to the state of the accounts83

modelled by S. The abstract syntax of our ledger can be defined as:84

T := P n−→ P85

L := ϵ | T ; L86
87

https://omelkonian.github.io/hoare-ledgers

O. Melkonian, W. Swierstra, J.Chapman XX:3

Each transaction T describes the transfer of funds n from one person to another; the ledger88

consists of a list of such transactions, with the most recent transaction last. Now that we89

have the syntax in place, we present the semantics of L in three different styles.90

2.1 Denotational semantics91

We give the denotational semantics of a ledger by mapping L to a function of type S → S,92

executing all the transactions in the ledger starting from a given state with given account93

balances. This semantics is straightforward to define, by composition (◦) of the semantics94

for a single transaction given by function d:95

J_K : L → S → SJϵK = idJt; lK = JlK ◦ d(t)

d : T → S → S

d(p1
n−→ p2)(σ) = λp.


σ(p) − n if p = p1 6= p2

σ(p) + n if p = p2 6= p1

σ(p) otherwise

96

We can formulate and prove a simple compositionality result, stating that the appending97

of ledgers is mapped to the composition of their denotations.98

▶ Theorem 1. For any ledgers l1 and l2, we have Jl1 ++ l2K = Jl2K ◦ Jl1K.99

This result, however, gives us only limited modularity—we still need to break a ledger100

into sequential pieces that we consider individually. To handle large ledgers, however, we101

would like to reason about arbitrary ledger fragments, in particular some subset of the102

transactions that are related to a specific smart contract in the blockchain setting.103

2.2 Operational semantics104

Alternatively, we can describe an operational semantics for L. To do so, we define a relation:105

〈l, σ〉 → τ , denoting that running the ledger l in the state σ terminates in the state τ .106

The definition of this relation is entirely straightforward:107

stop
〈ϵ, σ〉 → σ

〈l, d(t)(σ)〉 → τ
step

〈t; l, σ〉 → τ
108

It is straightforward to establish that these two semantics coincide:109

▶ Theorem 2. For any ledger l and state σ, we have that JlK(σ) = τ iff 〈l, σ〉 → τ .110

Naturally, we can use the equivalence of the two semantics to transfer previous results111

to the operational setting as corollaries, e.g. get the following compositionality principle for112

the combination of two ledgers as a corollary of Theorem 1 and 2:113

▶ Corollary 3. For any ledgers l, l′ and states σ, σ′, τ we have that 〈l, σ〉 → σ′ and114

〈l′, σ′〉 → τ iff 〈l ++ l′, σ〉 → τ .115

2.3 Axiomatic semantics116

We can also define an axiomatic semantics for L. To do so, we define inference rules for117

Hoare triples of the form {P} l {Q}, where P and Q are predicates on our state space S.118

stop
{P } ϵ {P }

{P } l {Q}
step

{P ◦ d(t)} t; l {Q}
119

XX:4 Program logics for ledgers

We can then add the typical rule for weakening/strengthening pre-/post-conditions:120

P ′ ⇒ P {P} l {Q} Q ⇒ Q′
consq

{P ′} l {Q′}
121

Once again, we can relate our axiomatic semantics to its operational and denotational coun-122

terparts:123

▶ Theorem 4. {P} l {Q} holds iff P (σ) and 〈l, σ〉 → τ implies Q(τ) for all σ and τ .124

▶ Theorem 5. {P} l {Q} holds iff P (σ) and JlK(σ) = τ implies Q(τ) for all σ and τ .125

Again, we can derive a sequencing rule as a corollary of the equivalent statement about126

for ledgers in the previous semantics:127

{P} l1 {Q} {Q} l2 {R}
app

{P} l1 ++ l2 {R}
128

▶ Remark 6. For the rest of the paper, whenever we axiomatize inference rules (e.g. stop,129

step, consq) we imply that they are at the same time proven sound with respect to the130

denotational or operational semantics. Moreover, any subsequent derived inference rules131

(e.g. app above) are implicitly proven using either the axioms or directly appealing to their132

denotational/operational counterparts.133

Example specification134

Equipped with a program logic for transactions, we can now formulate properties using135

Hoare triples and prove them in a sequential fashion akin to equational reasoning:1136

{λσ. σ(A) = 2}137

A
1−→ B138

{λσ. σ(A) = 1}139

A
1−→ C140

{λσ. σ(A) = 0}141
142

The above reads as follows: we start from a state where A holds 2 units of currency; then143

execute a transfer of one of those from A to B resulting in a state where only a single unit144

remains in A’s account; and we subsequently transfer the other unit to C reaching a final145

state where A holds no funds.146

However, to prove such statements amounts to providing evidence for each Hoare triple147

at each step, which involves predicates over the whole state although each transaction can148

only refer to two distinct participants. In the case of a more complicated state space than149

just a single participant, this approach is non-compositional, since you would need to talk150

about the whole state you care about in one go. This is precisely the reason we now turn151

our attention to separation logic [24].152

1 To see the rules of our various logics in use, we provide some example Hoare-style proofs in Appendix A.

O. Melkonian, W. Swierstra, J.Chapman XX:5

3 Partiality & Separation153

In the previous section, we defined the simplest possible semantics for financial ledgers.154

There are, however, two important drawbacks to the semantics that we have seen so far.155

Firstly, we assumed that the value associated with each participant was an integer—yet156

in many financial settings, there is a limit to how many funds may be overdrawn. As a157

result, attempting to transfer funds may fail. To model this, we revise the state space to158

disallow negative balances:159

S := P 7→ N160

Note that our entire approach can be trivially shifted to any fixed bound other than zero,161

enabling the modelling of bounded debt. The semantics become more involved, since we need162

to explicitly handle situations where more than the available funds are being transferred.163

The second problem with our semantics is more subtle. Although each of these semantics164

lets us reason about the ledger l1 ++ l2 in terms of the meaning of l1 and l2, we cannot easily165

do the same for an interleaving of the transactions from l1 and l2. To address these issues,166

this section revises our previous semantics, accommodating for partiality, and defines an167

alternative axiomatic semantics based on separation logic.168

3.1 Denotational semantics169

On the denotational side, errors will be reflected on the domain of our semantics which will170

now move from a total to a partial function space S → Maybe S, where just constructs a new171

state after successful execution and nothing signals an error. As a result, the semantics of a172

ledger can no longer use function composition to sequence the semantics of its constituent173

transactions; we need to define the Kleisli composition that collapses to nothing if the first174

partial function fails:175

(f >=> g)(s) =

{
g(s′) if f(s) = just s′

nothing if f(s) = nothing
176

177

Using this we can now iterate the transactions as before to get the denotation of a ledger:178

J_K : L → S → Maybe SJϵK = justJt; lK = d′(t) >=> JlK
d′ : T → S → Maybe S

d′(p1
n−→ p2)(σ) =

{
just d(p1

n−→ p2)(σ) if σ(p1) ≥ n

nothing otherwise

179

The semantics of a single transaction, given by the function d′, now checks the validity of180

each transfer and fails if insufficient funds are available, otherwise reuses the denotation d181

from the previous section which is now guaranteed to never reach a negative value. We will182

write “t is valid in σ” as a uniform way to express the validity of a transaction t with respect183

to a given state σ, which will become more intricate when we consider blockchain ledgers in184

the next section.185

3.2 Operational semantics186

The operational semantics remain mostly unchanged, aside from an additional check in the187

step rule:188

XX:6 Program logics for ledgers

stop
〈ϵ, σ〉 → σ

t is valid in σ 〈l, d(t)(σ)〉 → τ
step

〈t; l, σ〉 → τ
189

It is no coincidence that there is such a minimal overhead on the operational semantics.190

Rather, this stems from its relational presentation, where partiality is inherently possible191

and rules only specify successful behaviour.192

3.3 Axiomatic semantics193

The base case is not affected in any way:194

stop
{P} ϵ {P}195

We have more choice when it comes to adapting our axiomatic semantics: should we196

ensure all transactions succeed? Or do we want to observe failing transactions?197

Total correctness: By enforcing that the weakened precondition P ◦ d(t) implies a198

transaction’s validity, we ensure that adding a new transaction in a ledger always suc-199

ceeds:200

P ◦ d(t) ⇒ t is valid {P} l {Q}
step

{P ◦ d(t)} t; l {Q}
201

This choice lets us focus on the successful cases only.202

Partial correctness: Alternatively, we can reason about those cases where a transaction203

fails, using the error-handling semantics d′:204

{P} l {Q}
step

{↑ P ◦ d′(t)} t; l {Q}
205

Here the predicate transformer, ↑, lifts a predicate over S to a predicate over Maybe S.206

There are two canonical ways to achieve this lifting: the weak lifting that collapses to207

true when a transaction fails; the strong lifting that collapses to false upon failure.208

Throughout this paper, we will use the strong and partial version of correctness, which we209

again prove sound with respect to the denotational semantics:210

▶ Theorem 7. {P} l {Q} holds iff P (σ) and JlK(σ) = just τ implies Q(τ) for all σ and τ .211

3.4 Separation logic212

In the previous sections, we gave three semantics for ledgers. Yet each relies on having the213

complete ledger at our disposal—we cannot yet use these semantics to reason about arbitrary214

subsets of transactions, independent of the others. To this end, we define a separating215

conjunction combining two predicates, P and Q, on our state space S. Before we do so,216

however, we need to consider how to combine states S. In most program language semantics,217

this is done by splitting the heap into two (disjoint) parts. The separating conjunction, P ∗Q,218

is then defined as follows:219

(P ∗ Q)(σ) := ∃σ1. ∃σ2. P (σ1) ∧ Q(σ2) ∧ σ = σ1] σ2220
221

When considering financial ledgers, however, we can do better. As each transaction222

preserves the overall funds, we do not require the maps to be disjoint; instead, we can223

O. Melkonian, W. Swierstra, J.Chapman XX:7

divide the funds from both maps into two distinct parts! To do so, we begin by defining the224

following operation of combining states by pointwise addition of their funds:225

(σ1 ⊕ σ2)(p) := σ1(p) + σ2(p)226
227

Using this operation, we can now define the separating conjunction of predicates as follows:228

(P ∗ Q)(σ) := ∃σ1. ∃σ2. P (σ1) ∧ Q(σ2) ∧ σ = σ1 ⊕ σ2229
230

The frame rule, used to introduce the separating conjunction, now becomes:231

{P} l {Q}
frame

{P ∗ R} l {Q ∗ R}
232

Crucially, this version of the frame rule does not have the usual side conditions required233

to reason about imperative languages, namely, that the set of variables modified by l must234

be disjoint from the free variables mentioned by R. Intuitively, this rule is valid since235

transactions preserve the total amount of funds in circulation: we can split off some of these236

funds (leaving funds that satisfy R left over), move these funds in accordance with l, and237

then recombine the result with the funds satisfying R.238

To complete this semantics, however, we need to add a few basic rules that are currently239

missing. The rule for handling a single transaction is very simple indeed:240

send
{p1 7→ n} p1

n−→ p2 {p2 7→ n}241

The precondition, p1 7→ n, states that participant p1 has a total of n funds (and all other242

participants have none). After executing this transaction, p2 has received these n funds243

(and all other participants, including p1, have none). By itself, this rule does not seem244

useful—but in combination with the frame rule above, it can be used to execute a single245

transaction in any larger state—leaving all other funds untouched.246

The final two rules describe the behaviour of an entire ledger:247

empty
{emp} ϵ {emp}

{P } l1 {Q} {Q} l2 {R}
app

{P } l1 ++ l2 {R}
248

The first rule states that the empty ledger leaves the empty state unchanged; the second249

describes how transactions from two non-empty ledgers are run sequentially.250

Concurrent separation logic251

Furthermore, we can define a (non-deterministic) interleaving operation on ledgers, l1 || l2.252

One of the more promising observations we can make is that the familiar rule for concurrent253

separation logic also holds for the interleaving of two ledgers:254

{ P1 } l1 { Q1 } { P2 } l2 { Q2 }
par

{ P1 ∗ P2 } l1 || l2 { Q1 ∗ Q2 }
255

This provides a modular reasoning principle for ledgers: it allows us to focus on an arbitrary256

subset of the ledger’s transactions and reason about this subset in isolation. Whenever257

we interleave its transactions with the remainder of the ledger, any properties we have258

established still hold of the composite ledger.259

XX:8 Program logics for ledgers

▶ Remark 8. At this point, we have discovered that the monoidal (de)composition of values260

gives us the modularity we desired on arbitrary ledger interleavings l1 || l2. There is nothing261

preventing us from bringing that lesson back to the denotational semantics—Theorem 7262

assures us that the same principle holds there—although arguably it was much harder to263

uncover in the denotational or operational setting by themselves.264

However, the need for a separation logic arises from the modularity we are after at the265

specification level, that is when we consider the (monoidal) combination of two predicates,266

where the notion of Hoare triples and particularly the separating conjunction of two predic-267

ates P ∗ Q provides a convenient abstraction for reasoning about ledger fragments.268

4 UTxO269

In the coming sections, we will explore how to define similar semantics for UTxO-based270

blockchains. To do so, requires abandoning our previous assumption that there is a fixed271

set of participants, each with their own account. Instead, funds are locked by a validator272

script. Funds can be spent by anyone, provided they can provide the redeemer data, that is,273

data mapped to true by the associated validator script:274

Output := {validator : DATA → B, value : N}275

Typically, such a validator script might require a public key to unlock the funds which are276

locked by the corresponding private key.277

Transactions will now need to consume previous (unspent) outputs, to which we can278

refer by using the transaction’s hash and the index into its outputs (we write t#
k to refer to279

the k-th output of t), as well as providing redeemer data280

Ref := {tx : HASH , index : N}281

Input := {ref : Ref , redeemer : DATA}282
283

Transactions consume such references and produce new outputs locked by validators:284

T := {inputs : [Input], outputs : [Output]}285

L := ϵ | T ; L286
287

For the sake of clarity, we have elided some additional transaction fields and context provided288

to validators that do not play a significant role in our investigation; a single transaction field289

forge : N immediately gets us to Bitcoin’s UTxO model [2], an extra transaction field290

datum : DATA and a context argument to validators summarising the current spending291

transaction further give us the fully Extended UTxO model employed by Cardano [6] that292

supports fully expressive smart contracts, and generalising output values from N to mappings293

of currencies to N further enables native tokens and multi-currency support [8, 7].294

The overall state of the ledger is a set of unspent transaction outputs (UTxOs), modelled295

as a finite map from output references to funds locked by validator scripts:296

S := Ref 7→ Output297

We again treat finite maps as functions from keys to values; we write k ∈ σ when map σ298

contains a mapping for reference k, σ \ ks to remove a set of keys ks in a given map σ, and299

σ] σ′ for the disjoint union.300

O. Melkonian, W. Swierstra, J.Chapman XX:9

4.1 Denotational semantics301

In the previous section, a transaction could fail if participants try to transfer more funds302

than they have in their account. In the UTxO setting, transactions are only valid under303

certain conditions. Given transaction t and state σ, t is valid in σ iff all the following criteria304

are met:305

referenced outputs are unspent in σ:306

∀(i ∈ t.inputs). i.ref ∈ σ307

there is no double spending:308

∀(i, j ∈ t.inputs). i 6= j → i.ref 6= j.ref309

value is preserved:310 ∑
i∈t.inputs

σ(i.ref).value =
∑

o∈t.outputs
o.value311

all inputs validate:312

∀(i ∈ t.inputs). σ(i.ref).validator(i.redeemer) = true313

Apart from the different validity checks, the only other difference with the previous314

semantics lies in the denotation of a single transaction in d. Instead of updating account315

balances, it instead removes all previous UTxOs consumed by the transaction’s inputs and316

then inserts new UTxOs for each of its outputs:317

d : T → S → S318

d(t)(σ) = σ \ {i.ref | i ∈ t.inputs}] {t#
k 7→ o | t.outputs[k] = o}319

320

Now we can give the denotational semantics as before, namely a (partial) state transition321

between valid states:322

J_K : L → S → Maybe SJϵK = justJt; lK = d′(t) >=> JlK
d′ : T → S → Maybe S

d′(t)(σ) =

{
just d(t)(σ) if t valid in σ

nothing otherwise

323

We can reuse the previous operational and axiomatic semantics that we saw for account-324

based ledgers, using the new state transition function, d, as well as the more involved check325

that validates a potential transaction, as outlined above.326

4.2 Separation Logic327

So far it has been straightforward to extend our results from the previous sections to UTxO-328

based blockchains: once we have the denotation of a single transaction, the semantics of a329

ledger is simply the composition of its constituent transactions. When we attempt to define330

a separation logic for the UTxO model, however, we encounter a new problem.331

The UTxO model refers to existing outputs by name, that is, using the hash of the332

enclosing transaction. In the account-based ledgers from the previous sections, funds are333

transferred directly by value. This allowed us to split and combine the finite maps, σ1 ⊕ σ2,334

that associate each participant with their available funds. In the UTxO situation, however,335

XX:10 Program logics for ledgers

funds are locked by a validator script and must be consumed as a whole: we cannot readily336

split and combine funds in the same way as we saw previously. Therefore, predicates such as337

t#
3 7→ v ∗ t#

3 7→ v′ no longer make sense, since the third output of transaction t can only be338

spent once. Consequently, our separating conjunction has to be restricted only to disjoint339

fragments of the global state, as is typical in separation logics reasoning about mutable340

memory:341

(P ∗ Q)(σ) := ∃σ1. ∃σ2. P (σ1) ∧ Q(σ2) ∧ σ = σ1] σ2342

As a result, we have to extend the frame rule with a side-condition, as is typical for343

semantics of imperative programming languages, to ensure the predicate R is separate from344

the fragments modified by the ledger l:345

{P} l {Q} l # R
frame

{P ∗ R} l {Q ∗ R}
346

The condition l # R ensures all references in l are disjoint from the support of R, i.e. precisely347

when the validity of the predicate does not depend on parts of the state that the ledger’s348

transactions mutate:349

l # R := ∀s.R(s) ↔ R(s \ {i.ref | i ∈ l.inputs})350

Similarly, the parallel rule also needs to be restricted to only disjoint interleavings:351

{ P1 } l1 { Q1 } { P2 } l2 { Q2 } l1 # P2 l2 # P1 par
{ P1 ∗ P2 } l1 || l2 { Q1 ∗ Q2 }

352

This is the point where our development has been rendered non-compositional, since we353

have to constantly reason about the dependency of the small part we are focusing on with354

respect to the entirety of the existing ledger.355

▶ Remark 9. One might wonder whether similar issues apply in the case of non-UTxO,356

account-based blockchains like Ethereum. There, the same issue with hash-based referencing357

applies, which will naturally also appear in the form of disjointness conditions, hence losing358

the compositional properties we are after. Moreover, we believe the underlying execution359

model, based on global mutate state, will be even less compositional and inhibit modular360

reasoning for orthogonal reasons. This further motivates our interest in the UTxO model361

and its variants, culminating in the proposed solution we show next.362

5 Abstract UTxO363

Another way to approach the problems with a separation logic for UTxO ledgers identi-364

fied in the previous section would be to tweak the UTxO model itself to make it easy to365

accommodate compositional reasoning techniques.366

Rather than give up on UTxO entirely, we instead define a variation of UTxO, abstracting367

away the hash-based references we saw previously. Rather than refer to unspent outputs by368

their name, we refer to them by value:369

Ref := Output370

The rest of the basic definitions remain intact, except that the state of the ledger can no371

longer be represented by a map from references to outputs, but rather as a bag of outputs,372

since we need to keep track of duplicates which are now perfectly fine.373

S := Bag〈Output〉374

O. Melkonian, W. Swierstra, J.Chapman XX:11

These bags, also known as multi-sets, can again be viewed as functions mapping outputs to375

quantities (N), so we will reuse the notation from the previous sections; now σ(k) returns376

how many times an element k occurs in bag σ. If we furthermore exploit the monoidal377

nature of the number of occurrences, we get access to an overlapping union operator that378

performs pointwise addition, as well as a notion of bag inclusion:379

(σ1 ⊕ σ2)(p) := σ1(p) + σ2(p)380

σ ⊆ τ := ∀x.σ(x) ≤ τ(x)381
382

We call the resulting ledger model Abstract UTxO (AUTxO), given that it abstracts away383

the ordering on transaction outputs imposed by the UTxO model.384

5.1 Denotational semantics385

To define a denotational semantics for AUTxO, we need to revise the validity conditions386

that check a transaction t given a current ledger state σ, and redefine the state transition387

function, d. Validity of abstract transactions closely follows the criteria we set previously388

in Section 4.1, except that inputs now only contain a monetary value locked by a validator389

(i.e. they are no longer represented as unspent outputs attached to previous transactions),390

so we need only check that the current bag of unspent values contains at least the consumed391

amount, and there is no longer a requirement to check for duplicate references, since it is392

now perfectly sensible to have two inputs that carry the same value. Formally, t is valid in393

σ iff all the following conditions hold:394

there are sufficient funds in σ:395

t.inputs ⊆ σ396

value is preserved:397 ∑
i∈t.inputs

i.ref.value =
∑

o∈t.outputs
o.value398

all inputs validate:399

∀(i ∈ t.inputs). i.ref.validator(i.redeemer) = true400

Notice that value preservation has become significantly simpler to formulate in this more401

abstract model, since we no longer need to query the value of a referenced output from the402

current state σ; the reference is the value!403

The denotational semantics of a single transaction removes previously unspent transac-404

tion outputs, replacing them with the outputs of the new transaction:405

d : T → S → S406

d(t)(σ) = σ \ {i.ref | i ∈ t.inputs} ⊕ t.outputs407
408

We derive the rest of the scaffolding to sequentially derive the denotation of a whole ledger409

exactly as before:410

J_K : L → S → Maybe SJϵK = justJt; lK = d′(t) >=> JlK
d′ : T → S → Maybe S

d′(t)(σ) =

{
just d(t)(σ) if t valid in σ

nothing otherwise

411

The operational and axiomatic semantics do not change in any way, except that they412

work on predicates over bags of outputs instead of maps from references to outputs.413

XX:12 Program logics for ledgers

5.2 Separation Logic414

We can finally regain modularity for our separation logic, thanks to transaction inputs in415

AUTxO referring to existing outputs by value. In particular, we can define the separating416

conjunction as follows:417

(P ∗ Q)(σ) := ∃σ1. ∃σ2. P (σ1) ∧ Q(σ2) ∧ σ = σ1 ⊕ σ2418

where we utilise the monoidal composition of two bags that may overlap, regardless of419

whether they are disjoint or not.420

Note that the elements in our case are pairs of a validator function and available funds.421

While previously we were using the monoidal action on the monetary funds, we now just422

compose at the level of bag occurrences leaving the value intact. That means that if the same423

validator locks two values v and v′, we cannot deduce that it locks v + v′—a property that424

the simple account-based ledgers did support. We sketch a further abstraction that accounts425

for this deeper composition in Section 6.2 by inserting silent transactions that redistribute426

funds, but leave a formal investigation for future work.427

The resulting inference rules are identical to the ones presented previously for account-428

based ledgers in Section 3, where we now use the monoidal actions on bags of values instead429

of the pointwise sum on finite maps.430

{P } l {Q}
frame

{P ∗ R} l {Q ∗ R}
{ P1 } l1 { Q1 } { P2 } l2 { Q2 }

par
{ P1 ∗ P2 } l1 || l2 { Q1 ∗ Q2 }

431

In particular, the par rule enables us to reason about separate parts of the ledger independ-432

ently. We can now prove properties of at the AUTxO level in a modular fashion, and have433

confidence that they also hold in an equivalent UTxO ledger where outputs are ordered and434

hash references are explicitly by name.435

Example use case436

In order to see how our emphasis on tracing the flow of values leads to a modular approach437

that is flexible enough to cover realistic problems, let us go through the scenario of trying438

to formally verify a smart contract running on top of a UTxO ledger.439

First, the contract under investigation might have two completely distinct flows of value440

that you would like to reason about in isolation. Alternatively, you might want to track the441

total value carried by the contract and, say, prove that is remains constant or within some442

range. Zooming out even further, you might want to track funds running across multiple443

contracts and make sure certain conditions are met that depend on how these contracts444

interact.445

Our approach readily adapts to all these levels of granularity, since they all share the446

same monoidal core that allows us to split funds, which in turn enable modular reasoning.447

Therefore, we believe our approach provides robust foundations for smart contract verifica-448

tion in general, starting from the primitive level of the ledger while being flexible enough to449

scale to more realistic settings involving smart contracts.450

5.3 Sound abstraction451

The relation between AUTxO and UTxO is not yet satisfying, as we need some kind of full452

abstraction [17] result that lets us conduct compositional proofs at the abstract (A) level453

which then translate to properties about an actual concrete (C) ledger. One can informally454

O. Melkonian, W. Swierstra, J.Chapman XX:13

see that all properties that do not observe the implementation details of the concrete model455

(i.e. the order of transaction outputs and their specific hashes), should be derivable from456

their abstract counterparts.457

To formalise the intuition above, we first define the abstraction of a concrete state as458

viewing its range as a bag:459

absS : C.S → A.S460

absS(σ) = {σ(k)|k ∈ σ}461
462

We can then build up abstraction functions for valid transactions (absT) and ledgers (absL),463

where we resolve the actual outputs that references consume. Most importantly, UTxO464

validity is transformed into AUTxO validity, making it possible to then relate their respective465

denotational semantics.466

▶ Lemma 10. Given a UTxO transaction t valid in σ, applying the UTxO semantics and467

then abstracting the resulting state is the same as first abstracting the state and then running468

the AUTxO semantics on the abstracted transaction:469

t valid in σ CJ t K(σ) = just τ

AJ absT (t) K(absS(σ)) = just absS(τ)
470

This naturally generalises to ledgers, where a ledger l is considered valid in σ when each471

transaction in sequence remains valid starting from σ:472

l valid in σ CJ l K(σ) = just τ

AJ absL(l) K(absS(σ)) = just absS(τ)
473

Finally, we can prove soundness of our abstract model with respect to the UTxO model,474

at least for properties that do not observe implementation details.475

▶ Theorem 11. Given a UTxO ledger l valid in some initial concrete state σ, we can476

discharge a concrete Hoare triple with abstract pre-/post-conditions by proving its abstract477

counterpart:478

A{P} absL(l) {Q} l valid in σ
soundness

C{P ◦ absS} l {Q ◦ absS}
479

where both Hoare triples have been implicitly instantiated to the state σ that is universally480

quantified at the outermost level.481

This means it is sound to conduct modular proofs on the abstract level; the equivalent482

statement on concrete ledgers will also hold. Note that our abstract model is not complete,483

since we can only cover abstract state predicates of the form P ◦ absS , thus we cannot hope484

to prove a full abstraction result.485

▶ Remark 12. While making this formal connection to UTxO is important to make sure486

our results readily transfer to existing blockchains, there is still something to be said about487

AUTxO in isolation, as an alternative underlying model for new blockchains. From the488

pragmatic lens of blockchain validation, AUTxO seems to allow far more liberal transaction489

sequences than UTxO, where you would need to re-submit transactions to resolve conflicts.490

This contention bottleneck heavily influences how many transactions can be validated in491

parallel, hence a blockchain built on AUTxO might allow higher transaction throughput.492

Although an experimental validation of this claim still remains, we note that there have493

been some initial experiments that explore similar relaxations of the UTxO model [18], as494

employed in the IOTA distributed ledger [19].495

XX:14 Program logics for ledgers

6 Discussion496

6.1 Related Work497

Blockchain Theory498

The entire line of research on UTxO-based ledgers starts from Bitcoin [20, 2, 3], later ex-499

tended in the Cardano blockchain to Extended UTxO (EUTxO) [29] so as to enable the500

full expressivity of smart contracts. Thankfully, there are mechanised formalisations for501

the meta-theory of both Bitcoin [27] and EUTxO [6, 7], all of which however suffer from502

a monolithic approach, where the only reasoning provided is based on induction over the503

whole history of the ledger. We believe that the approach present here does not contradict504

in any way with the basic assumptions in these formulations; we expect it can be readily505

deployed in each respective setting. One experiment for ledger modularity in the EUTxO506

setting [16] led to the inevitable non-compositional notion of separation we addressed here.507

On the Bitcoin side, there is a mechanised program logic for reasoning about Bitcoin’s508

script language [1] based on predicate transformer semantics [11]; the striking similarity with509

our work lies in the use of weakest preconditions to model access control, which is essentially510

what we use to define the step rule for our Hoare logic, i.e. in the calculated pre-condition511

↑ P ◦ d′(t).512

Alternative approaches to solving the modularity problem include the algebraic model of513

Idealised UTxO [13] where ledgers are generalised to ledger chunks with open-ended inputs514

rather than an inductive structure and naming is handled using nominal techniques [12],515

as well as the categorical treatment of Nester’s material history [21, 22] where one reasons516

about resources and ownership in the intuitive graphical language of symmetric monoidal517

categories [25, 9].518

In the non-UTxO setting, where the underlying ledger follows the account-based variant519

of models led by Ethereum, an approach based on ownership influenced by the program520

logic literature is used for implementing sharding—a technique for scaling up transaction521

validation across multiple nodes—for the Zilliqa blockchain [23].522

Concurrency Theory523

Analogies between the study of blockchains and classic concurrent or distributed computing524

have already been noted by experts in the latter that subsequently became involved in525

blockchain research [14, 26].526

One particular separation logic in existing work bears close resemblance to the one de-527

veloped in this paper, namely that of fractional permissions [4, 10] for handling partial528

ownership of resources. Similarly to our work, separating conjunction does not enforce dis-529

jointness but admits some level of overlap, in this case used to model scenarios in parallel530

programming with many readers and a single writer, for instance.531

Last but not least, we note our initial inspiration from previous work that applied the532

idea of separation logic on something other than computer programs mutating memory,533

namely in the domain of version control systems [28].534

6.2 Future Work535

Decompositionality536

One aspect that fails to translate to the UTxO setting is the treatment of separated conjunc-537

tions as arithmetic formulas, where equivalences such as A 7→ 2 ≈ A 7→ 1 ∗ A 7→ 1 hold by538

O. Melkonian, W. Swierstra, J.Chapman XX:15

definition. We can refer to this property as decompositionality, since it lets us automatically539

decompose a large resource into its constituent parts.540

This is simply not true in the UTxO model, as noted in Section 4.2, since we still need to541

consume previous outputs as a whole, whose funds are predetermined by the enclosing trans-542

action. However, we could get around this by silently inserting transactions that perform543

the necessary split/merge operations, thus allowing us to reason at an even more abstract544

level modulo transactions that merely redistribute funds. Accounting for such silent steps545

in the (A)UTxO model is a topic for further work.546

Connection with existing separation logics547

Although our approach draws heavily from the rich literature of separation logic in program-548

ming languages, we have not yet made a formal connection with our definitions and various549

notions of separation. One way to accomplish that is to instantiate an existing framework550

that supports various kinds of separation logics. A suitable candidate for that would be551

Abstract Separation Logic [5], where we could prove that the various ledger states across our552

development actually obey the interface and corresponding laws of separation algebras.553

A more practically oriented course of action would be to directly implement our proposal554

in the Iris framework [15] which supports a wide variety of separation logics in the Coq proof555

assistant. Given how extensible Iris is and the relative simplicity of our program logics, the556

transliteration of our Agda formalisation to Coq/Iris should be straightforward and quickly557

give us a practical verification tool.558

6.3 Conclusion559

We have presented a compositional approach to reasoning about UTxO ledgers, made pos-560

sible by exploiting the analogy between programs mutating memory and transactions trans-561

ferring funds between accounts. The key methodological insight is that the ledger can be562

viewed as a (restricted) programming language, thus opening up the possibility of develop-563

ing program logics to reason about (sequences of) transactions. We have demonstrated how564

ideas from separation logic in particular provide the modularity principle to reason about565

ledger fragments independently of one another.566

In the future, this work may lay the foundations for scaling up verification of complex567

UTxO-based smart contracts, offering multiple levels of abstraction or even multiple program568

logics depending on the desired level of modularity and detail. Reasoning about monolithic569

ledgers cannot scale without modular reasoning principles—this paper presents a first step570

in that direction.571

References572

1 Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, and Anton Setzer. Verification of Bit-573

coin script in Agda using weakest preconditions for access control. In Henning Basold, Jesper574

Cockx, and Silvia Ghilezan, editors, 27th International Conference on Types for Proofs and575

Programs, TYPES 2021, June 14-18, 2021, Leiden, The Netherlands (Virtual Conference),576

volume 239 of LIPIcs, pages 1:1–1:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,577

2021. doi:10.4230/LIPIcs.TYPES.2021.1.578

2 Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A formal model of579

Bitcoin transactions. In Sarah Meiklejohn and Kazue Sako, editors, Financial Cryptography580

and Data Security - 22nd International Conference, FC 2018, Nieuwpoort, Curaçao, February581

26 - March 2, 2018, Revised Selected Papers, volume 10957 of Lecture Notes in Computer582

Science, pages 541–560. Springer, 2018. doi:10.1007/978-3-662-58387-6_29.583

https://doi.org/10.4230/LIPIcs.TYPES.2021.1
https://doi.org/10.1007/978-3-662-58387-6_29

XX:16 Program logics for ledgers

3 Massimo Bartoletti and Roberto Zunino. Formal models of Bitcoin contracts: A survey.584

Frontiers Blockchain, 2:8, 2019. doi:10.3389/fbloc.2019.00008.585

4 John Boyland. Checking interference with fractional permissions. In Radhia Cousot, editor,586

Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13,587

2003, Proceedings, volume 2694 of Lecture Notes in Computer Science, pages 55–72. Springer,588

2003. doi:10.1007/3-540-44898-5_4.589

5 Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and Abstract590

Separation Logic. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-591

12 July 2007, Wroclaw, Poland, Proceedings, pages 366–378. IEEE Computer Society, 2007.592

doi:10.1109/LICS.2007.30.593

6 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Mi-594

chael Peyton Jones, and Philip Wadler. The Extended UTXO model. In Matthew Bernhard,595

Andrea Bracciali, L. Jean Camp, Shin’ichiro Matsuo, Alana Maurushat, Peter B. Rønne, and596

Massimiliano Sala, editors, Financial Cryptography and Data Security - FC 2020 International597

Workshops, AsiaUSEC, CoDeFi, VOTING, and WTSC, Kota Kinabalu, Malaysia, February598

14, 2020, Revised Selected Papers, volume 12063 of Lecture Notes in Computer Science, pages599

525–539. Springer, 2020. doi:10.1007/978-3-030-54455-3_37.600

7 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann601

Müller, Michael Peyton Jones, Polina Vinogradova, and Philip Wadler. Native custom tokens602

in the Extended UTXO model. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging603

Applications of Formal Methods, Verification and Validation: Applications - 9th International604

Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,605

October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes in Computer606

Science, pages 89–111. Springer, 2020. doi:10.1007/978-3-030-61467-6_7.607

8 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann608

Müller, Michael Peyton Jones, Polina Vinogradova, Philip Wadler, and Joachim Zahnent-609

ferner. UTXOma: UTXO with multi-asset support. In Tiziana Margaria and Bernhard Steffen,610

editors, Leveraging Applications of Formal Methods, Verification and Validation: Applications611

- 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020,612

Rhodes, Greece, October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes613

in Computer Science, pages 112–130. Springer, 2020. doi:10.1007/978-3-030-61467-6_8.614

9 Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical theory of resources. Inf.615

Comput., 250:59–86, 2016. doi:10.1016/j.ic.2016.02.008.616

10 Thibault Dardinier, Peter Müller, and Alexander J. Summers. Fractional resources in617

unbounded separation logic. Proc. ACM Program. Lang., 6(OOPSLA2):1066–1092, 2022.618

doi:10.1145/3563326.619

11 Edsger W Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.620

Communications of the ACM, 18(8):453–457, 1975.621

12 Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable622

binding. Formal Aspects Comput., 13(3-5):341–363, 2002. doi:10.1007/s001650200016.623

13 Murdoch James Gabbay. Algebras of UTxO blockchains. Math. Struct. Comput. Sci.,624

31(9):1034–1089, 2021. doi:10.1017/S0960129521000438.625

14 Maurice Herlihy. Blockchains from a distributed computing perspective. Commun. ACM,626

62(2):78–85, 2019. doi:10.1145/3209623.627

15 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek628

Dreyer. Iris from the ground up: A modular foundation for higher-order Concurrent Separa-629

tion Logic. J. Funct. Program., 28:e20, 2018. doi:10.1017/S0956796818000151.630

16 Orestis Melkonian, Wouter Swierstra, and Manuel M. T. Chakravarty. Formal investigation of631

the Extended UTxO model. In 4th ACM SIGPLAN International Workshop on Type-Driven632

Development (TyDe), 2019. URL: https://omelkonian.github.io/data/publications/633

formal-utxo.pdf.634

https://doi.org/10.3389/fbloc.2019.00008
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-61467-6_8
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1145/3563326
https://doi.org/10.1007/s001650200016
https://doi.org/10.1017/S0960129521000438
https://doi.org/10.1145/3209623
https://doi.org/10.1017/S0956796818000151
https://omelkonian.github.io/data/publications/formal-utxo.pdf
https://omelkonian.github.io/data/publications/formal-utxo.pdf
https://omelkonian.github.io/data/publications/formal-utxo.pdf

O. Melkonian, W. Swierstra, J.Chapman XX:17

17 Robin Milner. Fully abstract models of typed lambda-calculi. Theor. Comput. Sci., 4(1):1–22,635

1977. doi:10.1016/0304-3975(77)90053-6.636

18 Sebastian Müller, Andreas Penzkofer, Nikita Polyanskii, Jonas Theis, William Sanders, and637

Hans Moog. Reality-based UTXO ledger. CoRR, abs/2205.01345, 2022. arXiv:2205.01345,638

doi:10.48550/arXiv.2205.01345.639

19 Sebastian Müller, Andreas Penzkofer, Nikita Polyanskii, Jonas Theis, William Sanders, and640

Hans Moog. Tangle 2.0 leaderless nakamoto consensus on the heaviest DAG. IEEE Access,641

10:105807–105842, 2022. doi:10.1109/ACCESS.2022.3211422.642

20 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/en/643

bitcoin-paper, October 2008.644

21 Chad Nester. A foundation for ledger structures. In Emmanuelle Anceaume, Christophe645

Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine Casamatta, editors, 2nd Interna-646

tional Conference on Blockchain Economics, Security and Protocols, Tokenomics 2020, Octo-647

ber 26-27, 2020, Toulouse, France, volume 82 of OASIcs, pages 7:1–7:13. Schloss Dagstuhl -648

Leibniz-Zentrum für Informatik, 2020. doi:10.4230/OASIcs.Tokenomics.2020.7.649

22 Chad Nester. The structure of concurrent process histories. In Ferruccio Damiani and Ornela650

Dardha, editors, Coordination Models and Languages - 23rd IFIP WG 6.1 International Con-651

ference, COORDINATION 2021, Held as Part of the 16th International Federated Conference652

on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021,653

Proceedings, volume 12717 of Lecture Notes in Computer Science, pages 209–224. Springer,654

2021. doi:10.1007/978-3-030-78142-2_13.655

23 George Pîrlea, Amrit Kumar, and Ilya Sergey. Practical smart contract sharding with own-656

ership and commutativity analysis. In Stephen N. Freund and Eran Yahav, editors, PLDI657

’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and658

Implementation, Virtual Event, Canada, June 20-25, 2021, pages 1327–1341. ACM, 2021.659

doi:10.1145/3453483.3454112.660

24 John C. Reynolds. Separation Logic: A logic for shared mutable data structures. In 17th661

IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,662

Denmark, Proceedings, pages 55–74. IEEE Computer Society, 2002. doi:10.1109/LICS.2002.663

1029817.664

25 Peter Selinger. A survey of graphical languages for monoidal categories. New structures for665

physics, pages 289–355, 2011.666

26 Ilya Sergey and Aquinas Hobor. A concurrent perspective on smart contracts. In Mi-667

chael Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller, Peter Y. A. Ryan, Vanessa668

Teague, Andrea Bracciali, Massimiliano Sala, Federico Pintore, and Markus Jakobsson, edit-669

ors, Financial Cryptography and Data Security - FC 2017 International Workshops, WAHC,670

BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Pa-671

pers, volume 10323 of Lecture Notes in Computer Science, pages 478–493. Springer, 2017.672

doi:10.1007/978-3-319-70278-0_30.673

27 Anton Setzer. Modelling Bitcoin in Agda. CoRR, abs/1804.06398, 2018. URL: http://arxiv.674

org/abs/1804.06398, arXiv:1804.06398.675

28 Wouter Swierstra and Andres Löh. The semantics of version control. In Andrew P. Black,676

Shriram Krishnamurthi, Bernd Bruegge, and Joseph N. Ruskiewicz, editors, Onward! 2014,677

Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and678

Reflections on Programming & Software, part of SPLASH ’14, Portland, OR, USA, October679

20-24, 2014, pages 43–54. ACM, 2014. doi:10.1145/2661136.2661137.680

29 Joachim Zahnentferner. An abstract model of UTxO-based cryptocurrencies with scripts.681

IACR Cryptol. ePrint Arch., page 469, 2018. URL: https://eprint.iacr.org/2018/469.682

https://doi.org/10.1016/0304-3975(77)90053-6
http://arxiv.org/abs/2205.01345
https://doi.org/10.48550/arXiv.2205.01345
https://doi.org/10.1109/ACCESS.2022.3211422
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.4230/OASIcs.Tokenomics.2020.7
https://doi.org/10.1007/978-3-030-78142-2_13
https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-319-70278-0_30
http://arxiv.org/abs/1804.06398
http://arxiv.org/abs/1804.06398
http://arxiv.org/abs/1804.06398
http://arxiv.org/abs/1804.06398
https://doi.org/10.1145/2661136.2661137
https://eprint.iacr.org/2018/469

XX:18 Program logics for ledgers

A Examples683

Here we present some example derivations in the various logics developed throughout the684

paper, in order to demonstrate the relative strengths and weaknesses of each approach.685

Apart from the rules presented in the main body of the paper, we will also make use of686

the following auxiliary lemmas:687

688

cancel
{ A 7→ n } A n−→ B; B n−→ A { A 7→ n }

swap
{P ∗ Q} ≈ {Q ∗ P}689

690
691

Simple example using FRAME692

The frame rule lets us focus on a small part of a larger separating conjunction and apply693

the rule locally:694

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1}695

A
1−→ B a frame(C 7→ 0 ∗ D 7→ 1, send)696

{A 7→ 0 ∗ B 7→ 1 ∗ C 7→ 0 ∗ D 7→ 1}697

≈698

{C 7→ 0 ∗ D 7→ 1 ∗ A 7→ 0 ∗ B 7→ 1}699

D
1−→ C a frame(A 7→ 0 ∗ B 7→ 1, send ◦ swap)700

{C 7→ 1 ∗ D 7→ 0 ∗ A 7→ 0 ∗ B 7→ 1}701

≈702

{A 7→ 0 ∗ B 7→ 1 ∗ C 7→ 1 ∗ D 7→ 0}703

B
1−→ A a frame(C 7→ 1 ∗ D 7→ 0, send ◦ swap)704

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 1 ∗ D 7→ 0}705

≈706

{C 7→ 1 ∗ D 7→ 0 ∗ A 7→ 1 ∗ B 7→ 0}707

C
1−→ D a frame(A 7→ 1 ∗ B 7→ 0, send)708

{C 7→ 0 ∗ D 7→ 1 ∗ A 7→ 1 ∗ B 7→ 0}709

≈710

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1} ◀711
712

Simple example using PAR713

Notice how in the previous example the first and third transaction only involve A and B,714

while the other two only involve C and D. That’s why we can do better using the par rule,715

where we assemble a compositional proof from smaller proofs:716

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1}717

(A 1−→ B; B
1−→ A)|(D 1−→ C; C

1−→ D)718

3 (A 1−→ B; D
1−→ C; B

1−→ A; C
1−→ D) a par(HAB , HCD)719

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1} ◀720
721

O. Melkonian, W. Swierstra, J.Chapman XX:19

where722

HAB :=

{A 7→ 1 ∗ B 7→ 0}

A
1−→ B; B

1−→ A a cancel
{A 7→ 1 ∗ B 7→ 0} ◀

HCD :=

{C 7→ 0 ∗ D 7→ 1}

D
1−→ C; C

1−→ D a cancel
{C 7→ 0 ∗ D 7→ 1} ◀

723

UTxO example using FRAME724

We can conduct similar proofs for UTxO-based ledgers, although our predicates now have725

to also include references to previous transactions. We denote singleton predicates by ti 7→726

v at p, where we require a single UTxO to be unspent in the i-th output of transaction t,727

holding a value v locked by validator function p.728

t1 t3

t2 t4

1 locked by A 1 locked by B 1 locked by A

1 locked by D 1 locked by C 1 locked by D

729

{t0
0 7→ 1 at A ∗ t0

1 7→ 1 at D}730

t1 a frame(t0
1 7→ 1 at D, . . . , send)731

{t1
0 7→ 1 at B ∗ t0

1 7→ 1 at D}732

≈733

{t0
1 7→ 1 at D ∗ t1

0 7→ 1 at B}734

t2 a frame(t1
0 7→ 1 at B, . . . , send)735

{t2
0 7→ 1 at C ∗ t1

0 7→ 1 at B}736

≈737

{t1
0 7→ 1 at B ∗ t2

0 7→ 1 at C}738

t3 a frame(t2
0 7→ 1 at C, . . . , send)739

{t3
0 7→ 1 at A ∗ t2

0 7→ 1 at C}740

≈741

{t2
0 7→ 1 at C ∗ t3

0 7→ 1 at A}742

t4 a frame(t3
0 7→ 1 at A, . . . , send)743

{t4
0 7→ 1 at D ∗ t3

0 7→ 1 at A}744

≈745

{t3
0 7→ 1 at A ∗ t4

0 7→ 1 at D ◀746
747

Notice the additional proof obligations marked with . . . all over the place, which require748

tedious reasoning about disjointness.749

XX:20 Program logics for ledgers

UTxO example using PAR750

The par can slightly improve the situation by composing smaller proofs, but is no longer751

a scalable solution since we still need to provide evidence that the interleaved ledgers are752

disjoint:753

{t0
0 7→ 1 at A ∗ t0

1 7→ 1 at D}754

t1 . . . t4 a par(. . . , HAB , HCD)755

{t3
0 7→ 1 at A ∗ t4

0 7→ 1 at D} ◀756
757

where758

HAB :=

{t0
0 7→ 1 at A}

t1 a send
{t1

0 7→ 1 at B}
t3 a send

{t3
0 7→ 1 at A} ◀

HCD :=

{t0
1 7→ 1 at D}

t1 a send
{t2

0 7→ 1 at C}
t4 a send

{t4
0 7→ 1 at D ◀

759

AUTxO example using FRAME760

In the case of AUTxO, we can once again think of validators as a replacement for participant761

identifiers A, B, C, D, assuming transactions t1 . . . t4 that have the corresponding structure762

that enacts the transfers we defined in the initial non-blockchain example.763

Unsurprisingly, the Hoare conditions remain identical and only the enclosed transactions764

change from the initial proof:765

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1}766

t1 a frame(C 7→ 0 ∗ D 7→ 1, send)767

{A 7→ 0 ∗ B 7→ 1 ∗ C 7→ 0 ∗ D 7→ 1}768

≈769

{C 7→ 0 ∗ D 7→ 1 ∗ A 7→ 0 ∗ B 7→ 1}770

t2 a frame(A 7→ 0 ∗ B 7→ 1, send)771

{C 7→ 1 ∗ D 7→ 0 ∗ A 7→ 0 ∗ B 7→ 1}772

≈773

{A 7→ 0 ∗ B 7→ 1 ∗ C 7→ 1 ∗ D 7→ 0}774

t3 a frame(C 7→ 1 ∗ D 7→ 0, send)775

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 1 ∗ D 7→ 0}776

≈777

{C 7→ 1 ∗ D 7→ 0 ∗ A 7→ 1 ∗ B 7→ 0}778

t4 a frame(A 7→ 1 ∗ B 7→ 0, send)779

{C 7→ 0 ∗ D 7→ 1 ∗ A 7→ 1 ∗ B 7→ 0}780

≈781

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1} ◀782
783

O. Melkonian, W. Swierstra, J.Chapman XX:21

AUTxO example using PAR784

We finally demonstrate how we have regained compositionality in the AUTxO setting:785

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1}786

t1 . . . t4 a par(HAB , HCD)787

{A 7→ 1 ∗ B 7→ 0 ∗ C 7→ 0 ∗ D 7→ 1} ◀788
789

where790

HAB :=

{A 7→ 1 ∗ B 7→ 0}
t1 a send

{A 7→ 0 ∗ B 7→ 1}
t3 a send

{A 7→ 1 ∗ B 7→ 0} ◀

HCD :=

{C 7→ 0 ∗ D 7→ 1}
t2 a send

{C 7→ 1 ∗ D 7→ 0}
t4 a send

{C 7→ 0 ∗ D 7→ 1} ◀

791

	1 Introduction
	2 Ledgers & Semantics
	2.1 Denotational semantics
	2.2 Operational semantics
	2.3 Axiomatic semantics

	3 Partiality & Separation
	3.1 Denotational semantics
	3.2 Operational semantics
	3.3 Axiomatic semantics
	3.4 Separation logic

	4 UTxO
	4.1 Denotational semantics
	4.2 Separation Logic

	5 Abstract UTxO
	5.1 Denotational semantics
	5.2 Separation Logic
	5.3 Sound abstraction

	6 Discussion
	6.1 Related Work
	6.2 Future Work
	6.3 Conclusion

	A Examples

