
Music as Language
Putting Probabilistic Temporal Graph Grammars to Good Use

Orestis Melkonian
Information and Computing Sciences

Utrecht University
The Netherlands

melkon.or@gmail.com

Abstract
Music composers have long been attracted by the idea of
an automated tool for music generation, that is able to aid
them in their day-to-day compositional process. We focus
on algorithmic composition techniques that do not aim to
produce completemusic pieces, but rather provide an expert
composer with a source of copious amounts of musical ideas
to explore.
A promising formalism towards this direction are proba-

bilistic temporal graph grammars (PTGGs), which allow for
the automatic generation of musical structures by defining
a set of expressive rewrite rules.
However, the primary focus so far has been on generat-

ing harmonic structures, setting aside the other two main
pillars of music: melody and rhythm. We utilize the expres-
siveness of PTGGs to transcribe grammars found in the mu-
sicology literature. In order to do so, we make slight modifi-
cations to the original PTGG formalism and provide a con-
cise domain-specific language (DSL) embedded inHaskell to
define such grammars. Furthermore, we employ a heuristics-
driven post-processing step that interprets the abstract mu-
sical structures produced by our grammars into concrete
musical output.
Lastly, parametrizing over different musical configura-

tions enables more user control over the generative process.
We produce multiple variations of four configurations to
demonstrate the flexibility of our framework and motivate
the use of formal grammars in automated music composi-
tion.

CCS Concepts •Theory of computation→Grammars
and context-free languages; • Applied computing →
Sound and music computing; • Software and its engi-
neering→ Domain specific languages.

Keywords algorithmic music composition, music gram-
mars
FARM ’19, August 23, 2019, Berlin, Germany
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 7th ACM SIGPLAN International Workshop on Func-
tional Art, Music, Modeling, and Design (FARM ’19), August 23, 2019, Berlin,
Germany, https://doi.org/10.1145/3331543.3342576.

ACM Reference Format:
Orestis Melkonian. 2019. Music as Language: Putting Probabilis-
tic Temporal Graph Grammars to Good Use. In Proceedings of the
7th ACM SIGPLAN International Workshop on Functional Art, Mu-
sic, Modeling, and Design (FARM ’19), August 23, 2019, Berlin, Ger-
many.ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/
3331543.3342576

1 Introduction
1.1 Probabilistic Temporal Graph Grammars
Our work relies on a class of generative grammars for har-
monic structure, called probabilistic temporal graph gram-
mars (PTGGs) [Quick and Hudak 2013]. These grammars
consist of weighted rules (probabilistic), which aremoreover
parametrized by time duration (temporal) and allow repeti-
tion of a rewritten symbol via the use of the Let construct
(graph).

We eschew fromgiving a formal definition of PTGGs here,
as we will actually make some non-trivial modifications to
the original formulation and present our variant thoroughly
in Section 2.

1.2 Euterpea
Throughout our development, we use the Haskell music li-
brary Euterpea [Hudak and Quick 2018], as it offers defini-
tions for common musical structures and the ability to ren-
der music to MIDI files.
We further define the type of musical intervals, giving

way to chords and scales:
data Interval

= P1 | Mi2 | M2 | Mi3 | M3 | P4 | A4 | P5
| Mi6 | M6 | Mi7 | M7 | P8 | Mi9 | . . . | P15

deriving (Eq,Enum)

type ChordType = [Interval] -- ≡ ScaleType
type SemiChord = [PitchClass] -- ≡ SemiScale
type Chord = [Pitch] -- ≡ Scale

(⊩) :: PitchClass → ChordType → SemiChord

(⊩) = . . .
AChordType is defined by the intervals that comprise it, a
SemiChord is a ChordType with a specific tonic pitch class
and a Chord is a concrete voicing of a SemiChord . Scales

https://doi.org/10.1145/3331543.3342576
https://doi.org/10.1145/3331543.3342576
https://doi.org/10.1145/3331543.3342576

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian

have exactly the same representation as chords, but we give
different type aliases to distinguish them semantically. We
will use the ⊩ operator to instantiate a chord/scale type
with a tonic.

Another useful operation we will frequently use is that
of transposition (upwards or downwards). As this notion ap-
plies to several musical elements, we define a typeclass to
overload the corresponding operators:

class Transposable a where
(↑), (↓) :: a→ Interval → a

instance Transposable PitchClass where . . .
instance Transposable Chord where . . .

For convenience, we define short-hands for widely used
types of chords and scales:

-- Chord types.
maj = [P1,M3, P5]

m7b5 = [P1,Mi3,A4,Mi7]
...

allChords = [maj, . . .] :: [ChordType]

-- Scale types.
ionian = [P1,M2,M3, P4, P5,M6,M7]

major = ionian
lydian = mode 4 ionian
...

allScales = [ionian, . . .] :: [ScaleType]

Last but not least, we will need the action of randomly
selecting an item from a weighted list:

equally :: [a]→ [(Double, a)]
equally = zip (repeat 1.0)

choose :: MonadRandom m⇒ [(Double, a)]→ m a
choose xs = do

i← getIndex ⟨$⟩ getRandomR (0, sum (fst ⟨$⟩ xs))
return (xs !! i)

chooseBy :: MonadRandom m
⇒ (a→ Double)→ [(Double, a)]→ m a

chooseBy = choose ◦ fmap (λa→ (f a, a))

Notice the use of MonadRandom, which allows the opera-
tors to be used in anymonadic stack that provides a random-
ness source1, as well as reproducible results via randomness

1https://hackage.haskell.org/package/MonadRandom/docs/Control-
Monad-Random-Class.html

seeds. For brevity, we will replace these qualified signatures
with their instantiation in the IO monad2.

Overview The rest of the paper is structured as follows:
Section 2 describes our variant of the original PTGG formu-
lation, which makes it more convenient to transcribe gram-
mars found “in the wild”. Sections 3, 4 and 5 give gram-
mars for tonal harmony, melodic improvisation, and tabla
improvisation, respectively. Section 6 presents several ex-
ample configurations we use to generate music pieces and
Section 7 concludes with an overview of possible next steps.

2 Extending PTGG
In this section, we describe several extensions and alter-
ations we make to the original PTGG formalism intro-
duced in [Quick and Hudak 2013]. For the sake of self-
containment, we provide all relevant definitions, but choose
to omit technicalities pertaining to music manipulation
tasks. Nonetheless, readers who are not familiar with this
particular grammar formalism are encouraged to read the
original paper first.
All of our code development is available on Github3.

2.1 Basic Definitions
We start out with the datatype of grammars, which is
parametrized over the type of metadata it carries and the
type of symbols it manipulates. A grammar then consists of
an initial symbol and a list of rules:
data Grammar meta a

= a | : [Rule meta a]

Rules rewrite atomic symbols to (possibly more complex)
grammar terms, which can depend on the time duration of
the current symbol. We assign probabilistic weights to each
rule; when multiple rules can fire simultaneously, we ran-
domly select one based on their weight:

Firing Guards Modelling the right-hand side of rules as a
function from time values is certainly flexible and composi-
tional, but may prove overly unconstrained to allow rewrit-
ing in any possible fraction of time. For instance, it is per-
fectly reasonable to disallow rewriting of terms that have a
short duration (e.g. restrict the number of chords in a bar).
To express these constraints, we have augmented the left-

hand side of the grammar rules with a predicate on time val-
ues; the corresponding rule fires only whenever this predi-
cate holds for the current time. Below is the rule definition
that combines all aforementioned elements:
data Rule meta a

= (a,Double,Dur → Bool)↣ (Dur → Term meta a)

2 Wewrite (. . . → IO a) instead of (MonadRandom m⇒ . . . → m a).
3https://github.com/omelkonian/music-grammars

 https://hackage.haskell.org/package/MonadRandom/docs/Control-Monad-Random-Class.html
 https://hackage.haskell.org/package/MonadRandom/docs/Control-Monad-Random-Class.html
 https://github.com/omelkonian/music-grammars

Music as Language FARM ’19, August 23, 2019, Berlin, Germany

Terms are sequences of user-supplied symbols of a cer-
tain duration; duration is assigned using the : operator and
sequencing is possible with the binary operator ⊗ . We can
also wrap existing terms with auxiliary metadata using ▷
and repeat terms using Let :
data Term meta a

= a : Dur
| Term meta a ⊗ Term meta a
| meta▷Term meta a
| Let (Term meta a) (Term meta a→ Term meta a)

Higher-order Abstract Syntax for Let Thegrammars dis-
cussed in this work do not require repetition in their rules,
but we nevertheless provide a higher-order variant of the
original Let construct that enables node sharing.
Instead of using variables to refer to let-bound terms,

we utilize higher-order abstract syntax [Pfenning and Elliott
1988], as evidenced by the second argument of the Let con-
structor, which is another function. During the final step of
the rewriting process, when the fixpoint is reached, we “un-
let” the resulting term by applying the supplied function to
the bound term. This higher-order variant gives a stricter
notion of repetition than that proposed in [Quick and Hu-
dak 2013]; it is not possible to continue rewriting inside the
continuation, so multiple uses of the variable will result in
exact copies that cannot diverge.

Auxiliary Metadata The original PTGG formalism had
introduced a separate term constructor for harmonic mod-
ulation. Since we are dealing with more general grammars
here, we replace this constructor with a generic one that
annotates other terms with auxiliary information and make
theTerm datatype polymorphic on the type of annotations.
In Section 3, where we implement a grammar for tonal har-
mony, the type variable of annotations will be instantiated
to the type of musical intervals, hence modelling key mod-
ulation.

2.2 Typeclasses
The type of symbols a is provided by the user, but has to
adhere to certain constraints in order to allow for rewriting
and translation to actual music. To enforce these constraints,
we use Haskell’s typeclasses [Wadler and Blott 1989] and
require the type of symbols to be an instance of several of
them4.

Expansion Any metadata-carrying grammar term must
be expanded to a stripped-down grammar term with no
metadata (i.e. Term a ()), possibly producing terms of a dif-
ferent type b and requiring some input:
4 We also make use of several typeclass-related GHC extensions, including
MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances and Func-
tionalDependencies.

class Expand input a meta b where
expand :: input→ Term meta a→ IO (Term () b)

Notice that expansion can be a probabilistic process, so we
allow execution in the IO monad.
We also give a default instance for terms that already

carry no metadata:
instance Expand input a () a where
expand = const return

Interpretation When the rewriting process is done, we
have to somehow convert grammar symbols to actual MIDI
events. For that, we use Euterpea’sToMusic1 typeclass and
require that we can convert symbols to that type:
class ToMusic1 c⇒ Interpret input b c where
interpret :: input→ Music b→ IO (Music c)

Similar to expansion, this can be a random process requir-
ing some configuration as input.
If our symbol type is already an instance ofToMusic1, we

can trivially interpret it:
instance ToMusic1 b⇒ Interpret () b Note1 where
interpret = return ◦ toMusic1

Lastly, we require that we can compare symbols for equal-
ity and package all class constraints in a single type syn-
onym5:
type Grammarly input meta a b c =
(Eq a,Eq meta,ToMusic1 c
,Expand input a meta b
, Interpret input b c)

2.3 Rewriting
The rewriting process is rather straightforward, with few
deviations from the original algorithm. Given a desired total
duration, a well-formed grammar and the required input for
expansion and interpretation, the initial symbol gets rewrit-
ten up to fixpoint. Then, we expand all metadata wrappers
in the result, which we then interpret as a core music type:
runGrammar :: Grammarly input meta a b c

⇒ Grammar meta a→ Dur → input
→ IO (Music b,Music1)

runGrammar (init | : rs) t0 input = do
rewritten ← fixpointM rewrite (init : t0)
expanded ← expand input (unlet rewritten)
let abstract = toMusic expanded
concrete ← toMusic1 ⟨$⟩ interpret input abstract

5 The ConstraintKinds extension is needed to capture constraints in type
synonyms.

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian

return (abstract, concrete)
where
rewrite :: Term meta a→ IO (Term meta a)
rewrite (a : t) = pickRule a t (filter isActive rs)
where isActive ((a′, , p)↣) = a′ ≡ a ∧ p t

pickRule = . . .
toMusic :: Term () b→ Music b
toMusic (a : t) = Prim (Note t a)
. . .

unlet :: Term meta a→ Term meta a
unlet (Let x k) = unlet (k x)
. . .

fixpointM :: Eq x⇒ (x→ IO x)→ x→ IO x
. . .

A single step of the initial rewriting traverses the whole
term structure and rewrites atomic symbols, randomly pick-
ing one of the active rules for the current symbol and du-
ration. As we mentioned previously, the traversal does not
continue in the body of a Let and we “unlet” only when the
fixpoint is reached. Notice that we also return the abstract
musical structure we construct prior to interpretation.

Fixpoint Iteration Our variant of the PTGG rewriting
process iterates until a fixpoint is reached. This restricts the
grammars we can implement; we will not be able to extract
infinite sequences of abstract musical structure by writing
a non-converging grammar. However, this variant is more
aligned with the type of rewriting systems that grammar
writers often have in mind and covers all the grammars we
will investigate in this work.

The following utility functions will come in handy when
we later define grammars:

always :: Duration → Bool

always = const True

fillBars :: (Dur ,Dur)→ a→ Term meta a
fillBars (t, t′) = fold1 ⊗ ◦ replicate (t/t′) ◦ (: t′)

Thefiring guard always does not pose any restriction on the
current time value, while fillBars is used to repeat a symbol
of duration t′ across the total duration t.

3 Harmony
We initially set out to transcribe a generative grammar for
jazz chord sequences [Steedman 1984], which exploits the
recursive character of 12-bar blues progressions. Alas, the
rules used in Steedman’s grammar resemble those of a far
more expressive formalism than what we have currently at
hand, namely that of context-sensitive grammars.
Fortunately, there exists a suitable context-free grammar,

quite well-known in computational musicology circles, that

aspires to provide a universal context-free grammar for dia-
tonic progressions [Rohrmeier 2011]. The grammar is based
on a Schenkerian view of harmony, where an intricate pro-
gression can be abstracted away as a single scale degree and,
conversely, it is possible to elaborate degrees using a fixed
set of musical transformations [Schenker and Jonas 1935].
In fact, such a grammar is more suited to our require-

ments, since we prefer to have genre-agnostic grammars
and let the user further constrain generation according to
ad-hoc requirements. We will see example of such con-
straints in Section 3.2.

3.1 Grammar
The symbolsmanipulated by our grammar of tonal harmony
consist of scale degrees as terminals and non-terminal sym-
bols that guide the rewriting process:

data Deдree

= I | I I | I I I | IV | V | V I | V II -- terminals
| P | TR | DR | SR | T | D | S -- non-terminals

deriving (Eq,Enum)

Grammar symbols are divided in three levels: the
phrase level (P) divides the piece in tonic regions, the
functional level (TR,DR, SR,T ,D, S) distinguishes between
tonic/dominant/sub-dominant regions and the scale degree
level (I −V II) assigns specific scale degrees to each region.
Apart from elaborating simple regions to more elaborate
ones, the functional level also modulates the key of some
grammar sub-terms:

harmony :: Grammar Interval Deдree

harmony = P | :
[-- Phrase level
(P , 1, always) ↣ λt→ fillBars (t, 4 ∗ wn) TR
-- Functional level: Expansion
, (TR, 1, (> wn))↣ λt→ TR : t/2 ⊗ DR : t/2
, (TR, 1, always) ↣ λt→ DR : t/2 ⊗ T : t/2
, (DR, 1, always) ↣ λt→ SR : t/2 ⊗ D : t/2
] ++

[(x, 1, (> wn))↣ λt→ Let (x : t/2) (λy→ y ⊗ y)
| x← [TR, SR,DR]

] ++

[(TR, 1, always) ↣ (T :)

, (DR, 1, always) ↣ (D :)

, (SR, 1, always) ↣ (S :)

-- Functional level: Modulation
, (D, 1, (⩾ qn)) ↣ λt→ P5▷ D : t
, (S, 1, (⩾ qn)) ↣ λt→ P4▷ S : t

-- Scale-degree level: Secondary dominants
] ++

[(x, 1, (⩾ hn))↣ λt→ Let (x : t/2)
(λy→ (P5▷ y) ⊗ y)

Music as Language FARM ’19, August 23, 2019, Berlin, Germany

| x← [T ,D, S]

] ++

[-- Scale-degree level: Functional-Scale interface
(T , 1, (⩾ wn)) ↣ λt→ I : t/2 ⊗ IV : t/4 ⊗ I : t/4
, (T , 1, always) ↣ (I :)

, (S, 1, always) ↣ (IV :)

, (D, 1, always) ↣ (V :)

, (D, 1, always) ↣ (V I :)]

The grammar above uses metadata-enriched decorations
that carry musical intervals; these model key modulations
relative to the current key of the harmonic configuration.
Also note the use of (strict) repetitions using the Let con-
struct, something not apparent in Rohrmeier’s original
grammar.

3.2 Expansion
In order to expand the auxiliary modulations our grammar
terms carry, we need to have a certain harmonic context:

data HarmonyConf iд

= HarmonyConf iд

{basePc :: PitchClass

, baseScale :: ScaleType
, chords :: [(Double,ChordType)] }

Wenow traverse the grammar emitted from the rewriting
process, locally transposing the configuration’s key when-
ever we encounter a modulation and probabilistically choos-
ing a chord type for each scale degree6:

instance Expand HarmonyConf iд Deдree Interval

SemiChord where
expand :: HarmonyConf iд → Term Interval Deдree

→ IO (Term () SemiChord)

expand cfg h =

case h of
(i▷ t)→ expand (cfg {basePc = basePc cfg ↑ i }) t
. . .

(a : t) → (: t) ⟨$⟩ choose chs
where
tonic = basePc cfg ⊩ baseScale cfg
tone = tonic !! fromEnum degree
chs = (tone ⊩)

⟨$⟩ filter (match tonic) (chords cfg)

6 There aremany possible chord types for a given scale degree. For instance,
both major triads and major seventh chords can be used for the tonic of a
major scale.

3.3 Interpretation
After expanding the results, we get a abstract chord se-
quence that we need to instantiate with concrete chord voic-
ings. For reasons of euphony, one has to ensure a smooth
transition between subsequent chords, a process commonly
known as voice leading.

instance Interpret HarmonyConf iд SemiChord

Chord where
interpret :: HarmonyConf iд → Music SemiChord

→ IO (Music Chord)

interpret cfg = fold1 f
where f m (sc, d) = do

ch← chooseBy (chordDistance m) (inversions sc)
return (m ⊗ ch)

While the original grammar proposed in [Rohrmeier 2011]
considers only the standard major and minor scales, we al-
low degrees to be obtained by any user-supplied scale by
simple harmonization7.

4 Melody
To generate the melodic part of a music piece, we transcribe
a probabilistic grammar used for generating jazz solos in
the educational software tool Impro-Visor [Keller and Mor-
rison 2007]. The grammar consists of quite a few rules with
intricate weights, derived from statistical analysis of large
corpora of jazz solos.
Fortunately, it turns out that our current grammar for-

malism can easily express the original grammar. The gram-
mar proceeds in two levels; first, the rhythmic structure of
the improvisation is decided through the non-terminals P
and Q . Second, the rhythmic values are expanded to (possi-
bly more than one) melodic non-terminals V and N , which
are finally rewritten to terminal symbols that characterize a
note’s function with respect to the current harmonic back-
ground.

data M

= HT | CT | L | AT | ST | R -- terminals
| P | Q | V | N -- non-terminals

deriving Eq

CT terminals correspond to chord tones (i.e. notes belong-
ing to the current chord in the harmony), AT to approach
tones (i.e. notes a semitone apart from a chord tone), L to
tensions tones (i.e. notes not belonging to the current chord,
but providing further tension) and HT terminals mean ei-
ther CT , AT or L. ST terminals represent scale tones (i.e.
notes belonging to the current scale), Finally, R terminals
correspond to rests.

7 Themost standard technique for scale harmonization is based on stacking
thirds on each scale degree.

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian

4.1 Grammar
Most of the rewriting rules of the grammar act on elements
of a specific duration, so it is convenient to define a short-
hand for duration-independent rules:

(_) :: Head a→ Term meta a→ Rule meta a
a _ b = a↣ const b

Below, we give the grammar of melodic improvisation,
acting on the symbols we just defined:

melody :: Grammar () M

melody = P | :
[-- Rhythmic Structure: Expand P to Q
(P , 1, (≡ qn)) ↣ (Q :)

, (P , 1, (≡ hn)) ↣ (Q :)

, (P , 1, (≡ hn.)) _ Q : hn ⊗ Q : qn
, (P , 25, (> hn.)) ↣ λt→ Q : hn ⊗ P : (t − hn)
, (P , 75, (> wn)) ↣ λt→ Q : wn ⊗ P : (t − wn)
-- Melodic Structure: Expand Q to V, V to N
, (Q, 52, (≡ wn)) _ Q : hn ⊗ V : qn ⊗ V : qn
, (Q, 47, (≡ wn)) _ V : qn ⊗ Q : hn ⊗ V : qn
, (Q, 1, (≡ wn)) _ V : en ⊗ N : qn ⊗ N : qn

⊗ N : qn ⊗ V : en
, (Q, 60, (≡ hn)) _ Let (V : qn) (λx→ x ⊗ x)
, (Q, 16, (≡ hn)) _ HT : qn. ⊗ N : en
, (Q, 12, (≡ hn)) _ V : en ⊗ N : qn ⊗ V : en
, (Q, 6, (≡ hn)) _ N : hn
, (Q, 6, (≡ hn)) _ HT : qn3 ⊗ HT : qn3 ⊗ HT : qn3

, (Q, 1, (≡ qn)) _ CT : qn

, (V , 1, (≡ wn)) _ Let (V : qn)
(λx→ x ⊗ x ⊗ x ⊗ x)

, (V , 72, (≡ qn)) _ Let (V : en) (λx→ x ⊗ x)
, (V , 22, (≡ qn)) _ N : qn
, (V , 5, (≡ qn)) _ Let (HT : en3) (λx→ x ⊗ x ⊗ x)
, (V , 1, (≡ qn)) _ Let (HT : en3)

(λx→ x ⊗ x ⊗ AT : en3)

, (V , 99, (≡ en)) _ N : en
, (V , 1, (≡ en)) _ HT : sn ⊗ AT : sn

-- Melodic Structure: Expand N to terminals
, (N , 1, (≡ hn)) _ CT : hn

, (N , 50, (≡ qn)) _ CT : qn
, (N , 50, (≡ qn)) _ ST : qn
, (N , 45, (≡ qn)) _ R : qn
, (N , 20, (≡ qn)) _ L : qn
, (N , 1, (≡ qn)) _ AT : qn

, (N , 40, (≡ en)) _ CT : en
, (N , 40, (≡ en)) _ ST : en
, (N , 20, (≡ en)) _ L : en

, (N , 20, (≡ en)) _ R : en
, (N , 1, (≡ en)) _ AT : en]

Theabove is faithful to the original probabilistic grammar,
modulo the insertion of repetitive Let constructs in several
rules that produce duplicate terms. The grammar formalism
previously presented in [Keller and Morrison 2007] did not
have sharing capabilities (i.e. repetition), but it seemed ap-
propriate to repeat melodic structures identically now that
we are able to. Notice also that this grammar does not use
anymetadata and, therefore, itsmeta variable is instantiated
to ().

4.2 Interpretation
The result we get from the previous grammar describes a
melodic improvisation abstractly; there is a concrete rhyth-
mic structure, but only a vague description of how the notes
should function under a specific harmonic context. We now
need to interpret this structure as a concrete melodic impro-
visation, thus translating the terminal symbols of our gram-
mar to actual musical notes.
In order to do so, we require an abstract harmonic struc-

ture as input (Music SemiChord), indicating the chord pro-
gression the overall piece adheres to. For instance, this could
be the result we get by rewriting on our grammar of tonal
harmony in Section 3.
Moreover, we allow some control over themelodic output

of the interpretation by letting the user provide a weighted
choice of scales and octaves to use:

data MelodyConf iд

= MelodyConf iд

{ scales :: [(Double, ScaleType)]

, octaves :: [(Double,Octave)] }
type MelodyInput = (MelodyConf iд,Music SemiChord)

Below we present the conceptual skeleton of the process,
omitting the gory details of the heuristics we employ to
make the melody sound better:

instance Interpret MelodyInput M Pitch where
interpret (cfg, chs) symbols = mapM interpretSymbol

◦ synchronize chs
where

interpretSymbol :: (SemiChord,M)→ IO Pitch

interpretSymbol (ch, s) =
case s of
CT → choose ch
AT → choose $ (ch ↓Mi2) ++ (ch ↑Mi2)

ST → choose $ filter (match chord) (scales cfg)
. . .

Music as Language FARM ’19, August 23, 2019, Berlin, Germany

synchronize :: Music a→ Music b→ Music (a, b)
. . .

The main interpretation steps are to synchronize the har-
monic background with the grammar terms and then select
a valid note with respect to the current chord. In the case
of scale tones, for instance, we select a note out of the user-
supplied scales that match the current chord.

5 Rhythm
Moving on to the rhythmic part of the generation process,
we attempt to model rhythmic improvisations in the tradi-
tion of North Indian classical music.We specifically focus on
the traditional instrument tabla, since musicologists believe
tabla improvisation follows precise rules akin to natural lan-
guage [Kippen 2005]. Moreover, we can utilize an existing
context-free grammar for a particular improvisation tech-
nique, called qa’ida, which was developed in collaboration
with expert tabla players and later employed in the expert
system Bol Processor BP1 [Bel 1992].
It is important to note that subsequent versions of the Bol

Processor go even further to context-sensitive formalisms
that allow inspection of a terminal’s context while rewriting,
but we refrain from extending our grammar formalism to
accommodate such features.

5.1 Grammar
The grammar is rather simple, employing neither assign-
ment of probabilistic weights nor dependence on durations.
Note that non-determinism only arises when multiple rules
match the same symbol. For convenience, we define a short-
hand for this particular rule format8:
(↠) :: a→ [a]→ Rule meta a
x↠ xs = (x, 1, always) _ fold1 ⊗ ((: en) ⟨$⟩ xs)

Our terminal symbols consist of syllables (traditionally
known as bols), representing a different stroke of the instru-
ment; a common form of transliteration in written Carnatic
rhythms. Capitalized symbols represent non-terminals that
guide the rewriting process:
data Syllable

= -- terminals
Tr | Kt | Dhee | Tee | Dha | Ta

| Ti | Ge | Ke | Na | Ra | Noop

-- non-terminals
| S | XI | XD | X J | XA | XB | XG | XH | XC
| XE | XF | TA7 | TC2 | TE1 | TF1 | TF4 | TD1
| TB2 | TE4 | TC1 | TB3 | TA8 | TA3 | TB1 | TA1
deriving Eq

8 We assume an eighth-note beat, but this can easily be controlled by the
user.

The grammar can be conceptually divided in two layers:
first, non-terminal symbols are rewritten to ones that have a
fixed duration and, second, these are expanded to syllables
of the corresponding duration. One could rewrite the top
layer until fixpoint and then continue with the rest of the
rules independently:

rhythm :: Grammar () Syllable

rhythm = S | :
[S ↠ [TE1,XI]

,XI ↠ [TA7,XD],XD ↠ [TA8]

,XI ↠ [TF1,X J] ,X J ↠ [TC2,XA]

,XA ↠ [TA1,XB] ,XB ↠ [TB3,XD]

,XI ↠ [TF1,XG],XG ↠ [TB2,XA]

, S ↠ [TA1,XH]

,XH ↠ [TF4,XB] ,XH ↠ [TA3,XC]

,XC ↠ [TE4,XD],XC ↠ [TA3,XE]

,XE ↠ [TA1,XD],XE ↠ [TC1,XD]

,XC ↠ [TB1,XB]

, S ↠ [TB1,XF]

,XF ↠ [TA1,X J] ,XF ↠ [TD1,XG]

,TA7 ↠ [Kt ,Dha,Tr ,Kt ,Dha,Ge,Na]

,TC2 ↠ [Tr ,Kt], TE1↠ [Tr], TF1↠ [Kt]

,TF4 ↠ [Ti,Dha,Tr ,Kt]

,TE4 ↠ [Ti,Noop,Dha,Ti]

,TD1↠ [Noop], TB2↠ [Dha,Ti], TC1↠ [Ge]

,TB3 ↠ [Dha,Tr ,Kt]

,TA8 ↠ [Dha,Ti,Dha,Ge,Dhee,Na,Ge,Na]

,TA3 ↠ [Tr ,Kt ,Dha],TB1↠ [Ti],TA1↠ [Dha]]

5.2 Interpretation
Interpreting the tabla syllables is as simple as giving a
ToMusic1 instance for the Syllable type, essentially convert-
ing a syllable to the MIDI number of that tabla sound9:

instance ToMusic1 Syllable where
toMusic1 = toMusic ◦ pitch ◦ percussionMap
where percussionMap :: Syllable → Int

percussionMap s = case s of Tr → 38

Kt → 45

. . .

6 Generated Results
In this section, we define different musical configurations
and for each of them, generate several variations by re-
peating the non-deterministic rewriting procedure. For each

9 These numbers are dictated by the specific MIDI map that the user’s syn-
thesizer will use to play the tabla sounds.

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian

variation, we generate separate MIDI files for each part
(melody, harmony, tabla), which we combine to produce
sheet music and playable music files. All output is available
on Github10, but one can also listen to the generated songs
on Soundcloud11.
These outputs do not aim to be perceived as complete

pieces of music, but rather demonstrations that our results
exhibit a certain amount of variability and flexibility. For
this reason, there has been no manual musical editing, apart
from assigning different instruments to each voice and run-
ning a post-processing step that introduces more natural dy-
namics to the whole piece.
In order to generate a music piece, we require harmonic

and melodic configurations as input and then run all three
grammars to produce the final MIDI output:

generate :: FilePath → Dur

→ HarmonyConf iд → MelodyConf iд

→ IO ()

generate f t hCfg mCfg = do
(absHarm, harm)← runGrammar harmony t hCfg
(,mel)← runGrammar melody t (mCfg, absHarm)

(, rhy) ← runGrammar rhythm t ()
writeToMidiFile f (harm :=:mel :=: rhy)

We will ignore the tabla output for all configurations, ex-
cept the last one in Subsection 6.4.

6.1 Sonata in E Minor
We start out with a very simple configuration for a sonata in
E Minor. The pool of available chords and scales to choose
are very limited, with only three triads for the harmony
and two scales for improvisation. Both parts (chords and
melody) are meant to be played by a single piano, resem-
bling Classical-era pieces.

sonata
= generate ‘‘sonata” (12 ∗ wn)

HarmonyConf iд

{basePc = E

, baseOct = 4

, baseScale = minor
, chords = equally [mi,maj, dim] }

MelodyConf iд

{ scales = equally [ionian, harmonicMinor]
, octaves = [(5, 4), (20, 5), (10, 6)] }

10https://github.com/omelkonian/music-grammars/tree/master/output
11https://soundcloud.com/haskell-music-grammars/sets

6.2 Romanian Elegy for Piano & Cello
The second piece is based on the Romanian scale, which
is the fourth mode of the harmonic minor scale12. It usu-
ally evokes a feeling of mysticism that leads to interesting
melodic improvisation, but also more unusual harmoniza-
tions. Nonetheless, to keep a classical sound, we restrict our-
selves to a handful of chords without any tensions (9ths,
13ths, etc..):

romanianElegy
= generate ‘‘romanian” (12 ∗ wn)

HarmonyConf iд

{basePc = C

, baseOct = 4

, baseScale = romanian
, chords = equally [mi,maj, aug, dim,m7,m7b5] }

MelodyConf iд

{ scales = equally allScales
, octaves = [(20, 3), (15, 4), (10, 5)] }

6.3 Byzantine Dance for Harpsichord
For the next piece, we use the even more exotic Byzantine
scale, also known as double harmonic major scale. The con-
figuration places no restriction on the chords and scales
used by the generative process, hopefully leading to inter-
esting results:

byzantineDance
= generate ‘‘byzantine” (8 ∗ wn)

HarmonyConf iд

{basePc = Fs

, baseOct = 4

, baseScale = byzantine
, chords = equally allChords }

MelodyConf iд

{ scales = equally allScales
, octaves = [(1, 3), (20, 4), (15, 5), (1, 6)] }

6.4 Oriental Algebras for Metalophone, Sitar &
Tablas

Thefinal piece additionally uses the grammar of tabla impro-
visation, hence it is appropriate to switch to the more east-
ern Arabic scale, a heptatonic variant of the whole-half di-
minished scale. We leave chords completely unconstrained;
the generation is allowed to pick freely from a comprehen-
sive list of chords and scales we have defined. Moreover, we
intend to play the melody on the Sitar instrument, so we

12 Equivalently, the Romanian scale can be defined as the Dorian mode of
major with its 4th augmented.

 https://github.com/omelkonian/music-grammars/tree/master/output
https://soundcloud.com/haskell-music-grammars/sets

Music as Language FARM ’19, August 23, 2019, Berlin, Germany

make sure that the melodic generation picks notes from ap-
propriate octaves:

orientalAlgebras
= generate ‘‘oriental” (12 ∗ wn)

HarmonyConf iд

{basePc = A

, baseOct = 3

, baseScale = arabian
, chords = equally allChords }

MelodyConf iд

{ scales = equally allScales
, octaves = [(20, 4), (15, 5), (5, 6)] }

7 Discussion
Jazz Harmony We abandoned our attempt to transcribe
the grammar of jazz chord progressions presented in
[Steedman 1984], because of its overly expressive context-
sensitive rules; one has to inspect the surrounding con-
text of a symbol to determine which rules to rewrite with.
Nonetheless, Steedman later demonstrated an equivalent
grammar that is (weakly) context-free [Steedman 1996]. It
would certainly be worthwhile to examine whether it is pos-
sible to transcribe this equivalent grammar, although its pre-
sentation as a categorial grammar [Wood 2014] may prove
hard to model with our current PTGG formulation.
This direction may also shine some light on the relative

expressiveness of PTGGs; we believe them to lie somewhere
between context-free and context-sensitive grammars and
one should investigate intermediate grammar formalisms,
such as tree-adjoining [Joshi and Schabes 1997] and multi-
ple context-free grammars [Seki et al. 1991].

Better Interpretation Our work put most emphasis on
the usage of PTGGs to generate abstract musical structures,
rather than the a-posteriori interpretation of these abstract
musical structures to actual music.This was not by accident,
given that our interpretation is an ad-hoc mixture of brittle
heuristics and only admits an informal presentation.
Nevertheless, [Quick and Hudak 2012] already provides

a mathematically elegant, but also computationally feasi-
ble solution to the task of interpreting chord progressions
(i.e. voice leading), based on the notion of chord spaces. In
the same vein, it would be interesting to explore similar
mathematically-ground techniques for melodic improvisa-
tion.

Inherently-Typed Grammars There are various ways in
which our DSL permits the definition of ill-formed gram-
mars, e.g. one could break the rewriting process by giving
a non-converging grammar. Many such subtleties are cur-
rently the responsibility of the user of our DSL, but recent
advances in Haskell’s type system [Eisenberg et al. 2014;

Peyton Jones et al. 2006; Yorgey et al. 2012] allow for the
encoding of such constraints in the type of grammars [Lind-
ley and McBride 2014]. For instance, it is possible to encode
in the type-level that grammar rules preserve the total dura-
tion of the rewritten symbol, thus enforcing the linear usage
of time values statically. We plan to enrich the type of gram-
mars to statically enforce that grammars written in our DSL
are well-formed, in a way that is as opaque as possible to the
user.

Non-musical Domains While we utilized our grammati-
cal framework to express music generation, it seems likely
that the grammar formalism presented here is suitable for
other domains than music. We believe it would be worth-
while to investigate similarities described in the Algebraic
Theory of Polymorphic Temporal Media [Hudak 2004; Hu-
dak and Janin 2014], e.g. to generate random graphic ani-
mations.

Weight Inference Many musical grammars found in the
literature have been suggested for analytical purposes, e.g. a
song is parsed using a grammar of tonal harmony, resulting
in the harmonic structure of the piece.
In order to extract the generative dual of those gram-

mars, we need to manually assign the probabilistic weights
to overlapping rules, an error-prone process that requires
domain-specific expertise. To tackle this problem, it seems
appropriate to investigate statistical techniques that auto-
matically infer the weights of the rules, based on some ex-
isting corpus of musical data. One could go even further to
deduce the grammar rules themselves, but restriction to a
less expressive grammar formalism would be necessary for
tractable inference.

8 Conclusion
We have presented an extension of the original PTGG for-
malism and demonstrated that it is adequate to model com-
plicated music generation schemes, just as those found in
the musicology literature.
Furthermore, we are the first, to our knowledge, to at-

tempt to model other aspects of music using formal gram-
mars. We give example transcriptions of grammars found
in the music literature: a grammar for Western tonal har-
mony [Rohrmeier 2011], one for melodic jazz improvisa-
tion [Keller and Morrison 2007] and one for North-Indian
tabla drum improvisation [Bel 1992].
As a final contribution, we combine the grammars we

transcribed to form complete music compositions and ex-
tract several variations for each configuration. We wish to
emphasize that these example compositions are in no way
chosen to form a coherent whole, since they employ tech-
niques from unrelated music genres and, consequently, the
generated out is doomed not to sound authentic enough.

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian

Nonetheless, they act as an effective medium to demon-
strate the capabilities of our grammatical framework, as
well as evaluate the current prototypes we have at hand.

There is certainly room for further attempts to model a
stylistically coherent set of grammars, which would even-
tually generate well-formed musical compositions. For in-
stance, one could restrict the scope to the jazz genre, replac-
ing our current grammar for harmony with one that models
jazz chord progression as in [Steedman 1984]. The output of
our melodic grammar would now be interpreted over these
jazz chord progression, arguably leading to more realistic
results. As discussed in the Section 7, this might require ex-
tending the formalism even further with context-sensitive
features.

References
Bernard Bel. 1992. Modelling improvisatory and compositional processes.

Languages of Design, Formalisms for Word, Image and Sound 1, 1 (1992),
11–26.

Richard A Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. 2014. Closed type families with overlapping equa-
tions. ACM SIGPLAN Notices 49, 1 (2014), 671–683.

Paul Hudak. 2004. An algebraic theory of polymorphic temporal media. In
International Symposium on Practical Aspects of Declarative Languages.
Springer, 1–15.

Paul Hudak and David Janin. 2014. Tiled polymorphic temporal media. In
Proceedings of the 2nd ACM SIGPLAN international workshop on Func-
tional art, music, modeling & design. ACM, 49–60.

Paul Hudak and Donya Quick. 2018. The Haskell School of Music: From
signals to Symphonies. Cambridge University Press.

Aravind K Joshi and Yves Schabes. 1997. Tree-adjoining grammars. In
Handbook of formal languages. Springer, 69–123.

Robert M Keller and David R Morrison. 2007. A grammatical approach to
automatic improvisation. In Proceedings, Fourth Sound and Music Con-

ference, Lefkada, Greece, July.
James Kippen. 2005. The Tabla of Lucknow: A cultural analysis of a musical

tradition. Manohar Publishers.
Sam Lindley and Conor McBride. 2014. Hasochism: the pleasure and pain

of dependently typed Haskell programming. ACM SIGPLAN Notices 48,
12 (2014), 81–92.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. 2006. Simple unification-based type inference for GADTs. In
ACM SIGPLAN Notices, Vol. 41. ACM, 50–61.

Frank Pfenning and Conal Elliott. 1988. Higher-order abstract syntax. In
ACM sigplan notices, Vol. 23. ACM, 199–208.

Donya Quick and Paul Hudak. 2012. Computing with chord spaces. In
ICMC.

Donya Quick and Paul Hudak. 2013. Grammar-based automated music
composition in Haskell. In Proceedings of the first ACM SIGPLAN work-
shop on Functional art, music, modeling & design. ACM, 59–70.

Martin Rohrmeier. 2011. Towards a generative syntax of tonal harmony.
Journal of Mathematics and Music 5, 1 (2011), 35–53.

Heinrich Schenker and Oswald Jonas. 1935. Der freie Satz. Vol. 3. Universal
Edition.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991.
On multiple context-free grammars. Theoretical Computer Science 88, 2
(1991), 191–229.

Mark Steedman. 1996. The blues and the abstract truth: Music and mental
models. Mental models in cognitive science (1996), 305–318.

Mark J Steedman. 1984. A generative grammar for jazz chord sequences.
Music Perception: An Interdisciplinary Journal 2, 1 (1984), 52–77.

PhilipWadler and Stephen Blott. 1989. How tomake ad-hoc polymorphism
less ad hoc. In Proceedings of the 16th ACMSIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 60–76.

Mary McGee Wood. 2014. Categorial Grammars (RLE Linguistics B: Gram-
mar). Routledge.

Brent A Yorgey, StephanieWeirich, Julien Cretin, Simon Peyton Jones, Dim-
itrios Vytiniotis, and José Pedro Magalhães. 2012. Giving Haskell a pro-
motion. In Proceedings of the 8th ACM SIGPLAN workshop on Types in
language design and implementation. ACM, 53–66.

	Abstract
	1 Introduction
	1.1 Probabilistic Temporal Graph Grammars
	1.2 Euterpea

	2 Extending PTGG
	2.1 Basic Definitions
	2.2 Typeclasses
	2.3 Rewriting

	3 Harmony
	3.1 Grammar
	3.2 Expansion
	3.3 Interpretation

	4 Melody
	4.1 Grammar
	4.2 Interpretation

	5 Rhythm
	5.1 Grammar
	5.2 Interpretation

	6 Generated Results
	6.1 Sonata in E Minor
	6.2 Romanian Elegy for Piano & Cello
	6.3 Byzantine Dance for Harpsichord
	6.4 Oriental Algebras for Metalophone, Sitar & Tablas

	7 Discussion
	8 Conclusion
	References

