
Nominal techniques as an Agda library
Murdoch J. Gabbay1 and Orestis Melkonian2

1 Heriot-Watt University, Scotland
2 University of Edinburgh, Scotland

Introduction Nominal techniques [8] provide a mathematically principled approach to dealing
with names and variable binding in programming languages. However, integrating these ideas in
a practical and widespread toolchain has been slow, and we perceive a chicken-and-egg problem:
there are no users for nominal techniques, because nobody has implemented them, and nobody
implements them because there are no users. This is a pity, but it leaves a positive opportunity
to set up a virtuous circle of broader understanding, adoption, and application of this beautiful
technology.

This paper explores an attempt to make nominal techniques accessible as a library in the
Agda proof assistant and programming language [9], which can be viewed as a port of the first
author’s Haskell nom package [6], although that would be an injustice as its purpose is two-fold:

1. provide a convenient library to use nominal techniques in Your Own Agda Formalisation
2. study the meta-theory of nominal techniques in a rigorous and constructive way

A solution to Goal 1 must be ergonomic, meaning that a technical victory of implementing
nominal ideas is not enough; we further require a moral victory that the overhead be accept-
able for practical systems. Apart from this being a literate Agda file, our results have been
mechanised and are publicly accessible: https://omelkonian.github.io/nominal-agda/.
Nominal setup We conduct our development under some abstract type of atoms, satisfying
certain constraints, namely decidable equality and being infinitely enumerable.1. We model this
in Agda using module parameters, which could be instantiated with a concrete type:

module _ (Atom : Type) {{ _ : DecEq Atom }} {{ _ : Enumerable∞ Atom }} where
N: (Atom → Type) → Type
Nϕ = ∃ λ (xs : List Atom) → (∀ y → y /∈ xs → ϕ y)

The Nquantifier enforces that a predicate holds for all but finitely many atoms, and swapping
of two atoms can be performed on any type, subject to some laws:
record Swap (A : Type) : Type where

field swap : Atom → Atom → A → AL_↔_M_ = swap

instance
↔Atom : Swap Atom
↔Atom .swap x y z =

if z == x then y else if z == y then x else z
record SwapLaws : Type where

field swap-id : L a ↔ a M x ≡ x
swap-rev : L a ↔ b M x ≡ L b ↔ a M x
swap-sym : L a ↔ b M L b ↔ a M x ≡ x
swap-swap : L a ↔ b M L c ↔ d M x ≡ L L a ↔ b M c ↔ L a ↔ b M d M L a ↔ b M x

We only need to provide instances for the base case of atoms (whence the decidable equality),
and abstractions (coming up next). From this we can systematically derive swapping definitions
for all user-defined types, using a compile-time macro/tactic (c.f. the case study later on).

One particularly useful family of axioms in equivariant ZFA foundations [5] is that swapping
distributes everywhere (constructors, functions, type formers) with the special case for swapping
itself being swap-swap. It is consistent to axiomatize this generalized notion of distributivity
for swap and we do so by means of a tactic that realises this axiom scheme. Most of the time

1…also known as “unfiniteness” in a recent nominal mechanization of the locally nameless approach [10].

https://omelkonian.github.io/nominal-agda/

Nominal techniques as an Agda library M.J.Gabbay, O.Melkonian

we are working with types that have finite support, expressed using the ’new’ quantifier: N²
λ a b → swap b a x ≡ x. We can then define equivariant elements that admit the empty
support, as well as an operation to generate fresh atoms freshAtom : A → Atom (whence the
module requirement that atoms are infinitely enumerable). Agda is constructive, so freshAtom
is constructive too, which is different from how fresh atoms are used in (non-constructive) set
theories. An abstraction is just a pair of an atom and an element:

Abs A = Atom × A

conc : Abs A → Atom → A
conc (a , x) b = swap b a x

instance
↔Abs : Swap (Abs A)
↔Abs .swap a b (c , x) = (swap a b c , swap a b x)

Note that we can also provide a correct-by-construction and total concretion function. In nom-
inal techniques based on Fraenkel-Mostowski set theory [8] this is impossible, and it seems to
be a novel observation that in a constructive setup a total concretion function is fine.

Case study Once equipped with all expected nominal facilities, in particular atoms and atom
abstractions, it is easy to define terms in untyped λ-calculus without mentioning de Bruijn
indices or anything of that sort. For the sake of ergonomics and efficient theorem proving,
we provide a meta-programming macro — based on elaborator reflection [2] — that is able to
automatically derive the implementation of swapping of any type based on its structure.
data Term : Type where

‘_ : Atom → Term
· : Term → Term → Term
λ_ : Abs Term → Term

unquoteDecl ↔Term =
DERIVE Swap [quote Term , ↔Term]

data _≈_ : Term → Term → Type where
ν≈ : ‘ x ≈ ‘ x
ξ≈ : L ≈ L’ → M ≈ M’ → L · M ≈ L’ · M’
ζ≈ : N(λ x → conc f x ≈ conc g x) → λ f ≈ λ g

We can naturally express α-equivalence of λ-terms using the Nquantifier and manually prove
the aforementioned swapping laws and the fact that every λ-term has finite support. However,
these all admit a systematic datatype-generic construction and we are currently in the process
of automating them. The rest of the development remains identical to the mechanization
presented in the PLFA textbook [14], particularly the ‘Untyped’ chapter. Meanwhile, the
gnarly ‘Substitution’ appendix involving tedious index manipulations is now replaced by the
usual nominal presentation of substitution, alongside a few general lemmas about equivariance
and support:

[:=_] : Term → Atom → Term → Term
(‘ x) [a := N] = if x == a then N else ‘ x
(L · M) [a := N] = L [a := N] · M [a := N]
(λ f) [a := N] = λ z ⇒ conc f z [a := N] where z = freshAtom (a :: supp f ++ supp N)

We still have a few remaining lemmas to prove to fully cover the PLFA chapter on untyped
λ-calculus, but we do not see any inherent obstacles to completing the confluence proof. A
good next step would be to formalise a proof of cut elimination for first-order logic, since this
involves name-abstraction on both terms and proof-trees.

Related work There have been previous nominal mechanizations in Agda that focus on the
concrete instance of the untyped λ-calculus and include a proof of confluence [4, 3]. Ours
closely matches the non-mechanized formulation in [7], which the Haskell nom package [6] then
implements. Another representation of nominal sets in Agda [1] is preliminary and we would
hope that our approach is more ergonomic and more amenable to scaling up. We treat our Agda
library as a complement to other nominal implementations (in FreshML [12], Isabelle/HOL [13],
and Nuprl [11]) that is ergonomic, lightweight, accessible, and illustrates the practical compat-
ibility of nominal techniques within a constructive type system.

Nominal techniques as an Agda library M.J.Gabbay, O.Melkonian

References
[1] Pritam Choudhury. Constructive representation of nominal sets in Agda. Master’s thesis, Robinson

College, University of Cambridge, 2015.
[2] David R. Christiansen and Edwin C. Brady. Elaborator reflection: extending Idris in Idris. In

Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September
18-22, 2016, pages 284–297. ACM, 2016.

[3] Ernesto Copello, Nora Szasz, and Álvaro Tasistro. Machine-checked proof of the Church-Rosser
theorem for the lambda calculus using the Barendregt variable convention in constructive type
theory. In Sandra Alves and Renata Wasserman, editors, 12th Workshop on Logical and Semantic
Frameworks, with Applications, LSFA 2017, Brasília, Brazil, September 23-24, 2017, volume 338
of Electronic Notes in Theoretical Computer Science, pages 79–95. Elsevier, 2017.

[4] Ernesto Copello, Alvaro Tasistro, Nora Szasz, Ana Bove, and Maribel Fernández. Alpha-structural
induction and recursion for the lambda calculus in constructive type theory. In Mario R. F. Bene-
vides and René Thiemann, editors, Proceedings of the Tenth Workshop on Logical and Semantic
Frameworks, with Applications, LSFA 2015, Natal, Brazil, August 31 - September 1, 2015, volume
323 of Electronic Notes in Theoretical Computer Science, pages 109–124. Elsevier, 2015.

[5] Murdoch J. Gabbay. Equivariant ZFA and the foundations of nominal techniques. J. Log. Comput.,
30(2):525–548, 2020.

[6] Murdoch J. Gabbay. The nom haskell package, 2020. URL: https://hackage.haskell.org/
package/nom.

[7] Murdoch J. Gabbay and Aad Mathijssen. A nominal axiomatization of the lambda calculus.
Journal of Logic and Computation, 20(2):501–531, 2010.

[8] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects Comput., 13(3-5):341–363, 2002.

[9] Ulf Norell. Dependently typed programming in Agda. In Andrew Kennedy and Amal Ahmed,
editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, pages 1–2. ACM,
2009.

[10] Andrew M. Pitts. Locally nameless sets. Proc. ACM Program. Lang., 7(POPL):488–514, 2023.
[11] Vincent Rahli and Mark Bickford. A nominal exploration of intuitionism. In Jeremy Avigad and

Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs
and Proofs, Saint Petersburg, FL, USA, January 20-22, 2016, pages 130–141. ACM, 2016.

[12] Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML: programming with
binders made simple. In Colin Runciman and Olin Shivers, editors, Proceedings of the Eighth ACM
SIGPLAN International Conference on Functional Programming, ICFP 2003, Uppsala, Sweden,
August 25-29, 2003, pages 263–274. ACM, 2003.

[13] Christian Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reason., 40(4):327–356, 2008.
[14] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language Foundations in Agda.

August 2022. URL: https://plfa.inf.ed.ac.uk/22.08/.

https://hackage.haskell.org/package/nom
https://hackage.haskell.org/package/nom
https://plfa.inf.ed.ac.uk/22.08/

