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Introduction Nominal techniques [8] provide a mathematically principled approach to dealing
with names and variable binding in programming languages. However, integrating these ideas in
a practical and widespread toolchain has been slow, and we perceive a chicken-and-egg problem:
there are no users for nominal techniques, because nobody has implemented them, and nobody
implements them because there are no users. This is a pity, but it leaves a positive opportunity
to set up a virtuous circle of broader understanding, adoption, and application of this beautiful
technology.

This paper explores an attempt to make nominal techniques accessible as a library in the
Agda proof assistant and programming language [9], which can be viewed as a port of the first
author’s Haskell nom package [6], although that would be an injustice as its purpose is two-fold:

1. provide a convenient library to use nominal techniques in Your Own Agda Formalisation
2. study the meta-theory of nominal techniques in a rigorous and constructive way

A solution to Goal 1 must be ergonomic, meaning that a technical victory of implementing
nominal ideas is not enough; we further require a moral victory that the overhead be accept-
able for practical systems. Apart from this being a literate Agda file, our results have been
mechanised and are publicly accessible: https://omelkonian.github.io/nominal-agda/.

Nominal setup We conduct our development under some abstract type of atoms, satisfying
certain constraints, namely decidable equality and being infinitely enumerable.!. We model this
in Agda using module parameters, which could be instantiated with a concrete type:
module _ (Atom : Type) {{ _ : DecEq Atom }} {{ _ : Enumerableco Atom }} where
N : (Atom — Type) — Type
N¢ =3\ (xs: List Atom) - Vy = y & s — ¢ y)
The U quantifier enforces that a predicate holds for all but finitely many atoms, and swapping
of two atoms can be performed on any type, subject to some laws:
instance
<»Atom : Swap Atom
<»*Atom .swap z y z =

record Swap (A : Type) : Type where
field swap : Atom — Atom — A — A

o) = swap if z == x then y else if z == y then z else z
record SwapLaws : Type where
field swap-id : (a+a)z==
swap-rev : (a<b)lz=(b+al)a
swap-sym : (a<b)(bea)z=2
)

swap-swap : (a+ b)(ced)z=((acb)ece(aceb)d)(acb)e
We only need to provide instances for the base case of atoms (whence the decidable equality),
and abstractions (coming up next). From this we can systematically derive swapping definitions
for all user-defined types, using a compile-time macro/tactic (c.f. the case study later on).
One particularly useful family of axioms in equivariant ZFA foundations [5] is that swapping
distributes everywhere (constructors, functions, type formers) with the special case for swapping
itself being swap-swap. It is consistent to axiomatize this generalized notion of distributivity
for swap and we do so by means of a tactic that realises this axiom scheme. Most of the time

I..also known as “unfiniteness” in a recent nominal mechanization of the locally nameless approach [10].
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we are working with types that have finite support, expressed using the 'new’ quantifier: 12
Aab — swap b a z =2 We can then define equivariant elements that admit the empty
support, as well as an operation to generate fresh atoms freshAtom : A — Atom (whence the
module requirement that atoms are infinitely enumerable). Agda is constructive, so freshAtom
is constructive too, which is different from how fresh atoms are used in (non-constructive) set
theories. An abstraction is just a pair of an atom and an element:

Abs A = Atom x A

instance
<»Abs : Swap (Abs A)

: Abs A — Atom — A
cone ° om +Abs swapa b (¢, z) = (swapa b ¢, swap a b z)

conc(a,z)b=swapbacz
Note that we can also provide a correct-by-construction and total concretion function. In nom-
inal techniques based on Fraenkel-Mostowski set theory [8] this is impossible, and it seems to
be a novel observation that in a constructive setup a total concretion function is fine.

Case study Once equipped with all expected nominal facilities, in particular atoms and atom
abstractions, it is easy to define terms in untyped A-calculus without mentioning de Bruijn
indices or anything of that sort. For the sake of ergonomics and efficient theorem proving,
we provide a meta-programming macro — based on elaborator reflection [2] — that is able to
automatically derive the implementation of swapping of any type based on its structure.

data Term : Type where

' . Atom — Term data _~_ : Term — Term — Type where

_+__: Term — Term — Term v lrr

A_ 1 Abs Term — Term ¢~ Ll - M~M —L - M=L - M
unquoteDecl <> Term = (:MN(Ax —>concfxaconcgx) > AfrAyg

DERIVE Swap [ quote Term , <>Term ]

We can naturally express a-equivalence of A-terms using the W quantifier and manually prove
the aforementioned swapping laws and the fact that every A-term has finite support. However,
these all admit a systematic datatype-generic construction and we are currently in the process
of automating them. The rest of the development remains identical to the mechanization
presented in the PLFA textbook [14], particularly the ‘Untyped’ chapter. Meanwhile, the
gnarly ‘Substitution’ appendix involving tedious index manipulations is now replaced by the
usual nominal presentation of substitution, alongside a few general lemmas about equivariance
and support:

_[=_]: Term — Atom — Term — Term

(") [a:=N]=if z ==athen Nelse 'z

(L - M)[a=N]=L[la=N] - M[a=N]

(A f) [a:=N]=ANz= concfz[a:= N]where z= freshAtom (a :: supp f 4 supp N)
We still have a few remaining lemmas to prove to fully cover the PLFA chapter on untyped
A-calculus, but we do not see any inherent obstacles to completing the confluence proof. A
good next step would be to formalise a proof of cut elimination for first-order logic, since this
involves name-abstraction on both terms and proof-trees.

Related work There have been previous nominal mechanizations in Agda that focus on the
concrete instance of the untyped A-calculus and include a proof of confluence [4, 3]. Ours
closely matches the non-mechanized formulation in [7], which the Haskell nom package [6] then
implements. Another representation of nominal sets in Agda [1] is preliminary and we would
hope that our approach is more ergonomic and more amenable to scaling up. We treat our Agda
library as a complement to other nominal implementations (in FreshML [12], Isabelle/HOL [13],
and Nuprl [11]) that is ergonomic, lightweight, accessible, and illustrates the practical compat-
ibility of nominal techniques within a constructive type system.
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