Source code on Github
------------------------------------------------------------------------
-- Mappings as total functions from membership proofs of a finite list.

{-# OPTIONS --safe #-}
module Prelude.Lists.Mappings where

open import Prelude.Init; open SetAsType
open L.Mem using (_∈_; mapWith∈; ∈-++⁻; ∈-++⁺ˡ; ∈-++⁺ʳ)
open L.Perm using (∈-resp-↭; Any-resp-↭)
open import Prelude.General using (⟫_)
open import Prelude.Lists.Membership
open import Prelude.Lists.Permutations
open import Prelude.ToList

private variable
  a b p : Level
  A : Type a
  B : Type b
  P : Pred A p

  x : A
  xs xs′ ys zs : List A

-- ** Mappings from membership proofs.
infixr 0 _↦′_ _↦_

_↦′_ : List A  (A  Type )  Type _
xs ↦′ P =  {x}  x  xs  P x

map↦ = _↦′_
syntax map↦ xs  x  f) = ∀[ x  xs ] f

_↦_ : List A  Type b  Type _
xs  B = xs ↦′ const B

dom :  {xs : List A}  xs ↦′ P  List A
dom {xs = xs} _ = xs

codom : xs  B  List B
codom = mapWith∈ _

codom-↦ :  {xs : List A}  (f : xs  B)  codom f  A
codom-↦ {xs = x  _} f = λ where
  (here  _)   x
  (there x∈)  codom-↦ (f  there) x∈

weaken-↦ : xs ↦′ P  ys  xs  ys ↦′ P
weaken-↦ f ys⊆xs = f  ys⊆xs

cons-↦ : (x : A)  P x  xs ↦′ P  (x  xs) ↦′ P
cons-↦ _ y _ (here refl) = y
cons-↦ _ _ f (there x∈)  = f x∈

uncons-↦ : (x  xs) ↦′ P  xs ↦′ P
uncons-↦ = _∘ there

permute-↦ : xs  ys  xs ↦′ P  ys ↦′ P
permute-↦ xs↭ys xs↦ = xs↦  L.Perm.∈-resp-↭ (↭-sym xs↭ys)

_++/↦_ : xs ↦′ P  ys ↦′ P  xs ++ ys ↦′ P
xs↦ ++/↦ ys↦ = ∈-++⁻ _ >≡> λ where
  (inj₁ x∈)  xs↦ x∈
  (inj₂ y∈)  ys↦ y∈

destruct-++/↦ : xs ++ ys ↦′ P  (xs ↦′ P) × (ys ↦′ P)
destruct-++/↦ xys↦ = xys↦  ∈-++⁺ˡ , xys↦  ∈-++⁺ʳ _

destruct≡-++/↦ : zs  xs ++ ys  zs ↦′ P  (xs ↦′ P) × (ys ↦′ P)
destruct≡-++/↦ refl = destruct-++/↦

extend-↦ : zs  xs ++ ys  xs ↦′ P  ys ↦′ P  zs ↦′ P
extend-↦ zs↭ xs↦ ys↦ = permute-↦ (↭-sym zs↭) (xs↦ ++/↦ ys↦)

cong-↦ : xs ↦′ P  xs′  xs  xs′ ↦′ P
cong-↦ f refl = f

open ≡-Reasoning

-- ** Pointwise equality of same-domain mappings.
module _ {A : Type } {xs : List A} {P : Pred A ℓ′} where
  _≗↦_ : Rel (xs ↦′ P) _
  f ≗↦ f′ =  {x : A} (x∈ : x  xs)  f x∈  f′ x∈

  _≗⟨_⟩↦_ :  {ys : List A} 
    (ys ↦′ P)  (p↭ : xs  ys)  (xs ↦′ P)  Type _
  f′ ≗⟨ p↭ ⟩↦ f =  {x : A} (x∈ : x  xs)  f′ (∈-resp-↭ p↭ x∈)  f x∈

  permute-≗↦ :  {ys : List A}
     (p↭ : xs  ys)
     (f : xs ↦′ P)
      --——————————————————————————————————————
     permute-↦ p↭ f ≗⟨ p↭ ⟩↦ f
  permute-≗↦ p↭ f {x} x∈ =
    begin
      permute-↦ p↭ f (∈-resp-↭ p↭ x∈)
    ≡⟨⟩
      (f  ∈-resp-↭ (↭-sym p↭)) (∈-resp-↭ p↭ x∈)
    ≡⟨⟩
      f (∈-resp-↭ (↭-sym p↭) $ ∈-resp-↭ p↭ x∈)
    ≡⟨ cong f (∈-resp-↭∘∈-resp-↭˘ p↭ x∈) 
      f x∈
    


  permute-↦∘permute-↦˘ :  {ys : List A}
     (p↭ : xs  ys)
     (f : xs ↦′ P)
      --——————————————————————————————————————
     permute-↦ (↭-sym p↭) (permute-↦ p↭ f) ≗↦ f
  permute-↦∘permute-↦˘ p↭ f {x} x∈
    rewrite permute-≗↦ p↭ f x∈
          | L.Perm.↭-sym-involutive p↭
    = cong f $ Any-resp-↭∘Any-resp-↭˘ p↭ x∈

module _ (f : xs ↦′ P) (g : ys ↦′ P) where
  destruct-++/↦∘++/↦ :
    let f′ , g′ = destruct-++/↦ (f ++/↦ g)
    in (f ≗↦ f′) × (g ≗↦ g′)
  destruct-++/↦∘++/↦ = f≗ , g≗
    where
      fg : (xs ↦′ P) × (ys ↦′ P)
      fg = destruct-++/↦ (f ++/↦ g)
      f′ = fg .proj₁; g′ = fg .proj₂

      f≗ : f ≗↦ f′
      f≗ x∈ rewrite Any-++⁻∘Any-++⁺ˡ {ys = ys} x∈ = refl

      g≗ : g ≗↦ g′
      g≗ x∈ rewrite Any-++⁻∘Any-++⁺ʳ {xs = xs} x∈ = refl

  destruct≡-++/↦∘cong-↦ :
    (eq : zs  xs ++ ys) 
    let f′ , g′ = destruct≡-++/↦ eq (cong-↦ (f ++/↦ g) eq)
    in (f ≗↦ f′) × (g ≗↦ g′)
  destruct≡-++/↦∘cong-↦ refl = destruct-++/↦∘++/↦

-- T0D0 use for permute-↦∘permute-↦˘ to simplify
module _ {A : Type } {P : A  Type ℓ′} {x : A} {xs ys zs : List A} where
  permute-↦∘permute-↦ :
    (p : xs  ys) (q : ys  zs) (f : xs ↦′ P) 
    --——————————————————————————————————————————————————————
    permute-↦ q (permute-↦ p f) ≗↦ permute-↦ (↭-trans p q) f
  permute-↦∘permute-↦ p q f x∈ =
    begin
      permute-↦ q (permute-↦ p f) x∈
    ≡⟨⟩
      f (∈-resp-↭ (↭-sym p) $ ∈-resp-↭ (↭-sym q) x∈)
    ≡⟨⟩
      f (∈-resp-↭ (↭-sym $ ↭-trans p q) x∈)
    ≡⟨⟩
      permute-↦ (↭-trans p q) f x∈
    

-- ** Pointwise equality of ⊆-related mappings.
module _ {A : Type } {xs ys : List A} {P : Pred A ℓ′} where
  _≗⟨_⊆⟩↦_ : ys ↦′ P  (p : ys  xs)  xs ↦′ P  Type _
  f′ ≗⟨ p ⊆⟩↦ f = f′ ≗↦ (f  p)

  weaken-≗↦ : (p : ys  xs) (f : xs ↦′ P)
     weaken-↦ f p ≗⟨ p ⊆⟩↦ f
  weaken-≗↦ _ _ _ = refl

  _≗↦ˡ_ : xs ++ ys ↦′ P  xs ↦′ P  Type _
  fg ≗↦ˡ f = (fg  L.Mem.∈-++⁺ˡ) ≗↦ f

  ++-≗↦ˡ : (f : xs ↦′ P) (g : ys ↦′ P)
     (f ++/↦ g) ≗↦ˡ f
  ++-≗↦ˡ _ _ (here _) = refl
  ++-≗↦ˡ _ _ (there x∈) rewrite ∈-++⁻∘∈-++⁺ˡ {ys = ys} x∈ = refl

  _≗↦ʳ_ : xs ++ ys ↦′ P  ys ↦′ P  Type _
  fg ≗↦ʳ g = (fg  L.Mem.∈-++⁺ʳ _) ≗↦ g

  ++-≗↦ʳ : (f : xs ↦′ P) (g : ys ↦′ P)
     (f ++/↦ g) ≗↦ʳ g
  ++-≗↦ʳ f g y∈ with  xs
  ... |  [] = refl
  ... |  _  xs′ rewrite ∈-++⁻∘∈-++⁺ʳ {xs = xs} y∈ = refl

  _≗↦ˡʳ_,_ : xs ++ ys ↦′ P  xs ↦′ P  ys ↦′ P  Type _
  fg ≗↦ˡʳ f , g = (fg ≗↦ˡ f) × (fg ≗↦ʳ g)

  ++-≗↦ˡʳ : (f : xs ↦′ P) (g : ys ↦′ P)
     (f ++/↦ g) ≗↦ˡʳ f , g
  ++-≗↦ˡʳ f g = ++-≗↦ˡ f g , ++-≗↦ʳ f g

-- ** Properties.
++/↦-inj₂ :  (f : xs ↦′ P) (g : ys ↦′ P) (x∈ : x  xs ++ ys) (y∈ : x  ys)
   ∈-++⁻ xs x∈  inj₂ y∈
    --———————————————————
   (f ++/↦ g) x∈  g y∈
++/↦-inj₂ {xs = xs} _ _ x∈ _ eq
  with inj₂ _∈-++⁻ xs x∈
  with refleq
  = refl

++/↦≡-inj₂ : (eq : zs  xs ++ ys)
    (f : xs ↦′ P) (g : ys ↦′ P) (x∈ : x  zs) (y∈ : x  ys)
     ∈-++⁻ xs (subst (x ∈_) eq x∈)  inj₂ y∈
      --—————————————————————————————————————
     subst (_↦′ P) (sym eq) (f ++/↦ g) x∈  g y∈
++/↦≡-inj₂ refl = ++/↦-inj₂

++/↦-there : (f : x  xs ↦′ P) (g : ys ↦′ P)
   ((f  there) ++/↦ g) ≗↦ ((f ++/↦ g)  there)
++/↦-there {xs = []}         _ _ {_} _        = refl
++/↦-there {xs = _  _}      _ _ {_} (here _) = refl
++/↦-there {xs = xs@(_  _)} _ _ {_} (there x∈)
  with ∈-++⁻ xs (there x∈)
... | inj₁ _ = refl
... | inj₂ _ = refl

uncons-≗↦ : (f : x  xs ↦′ P) (g : ys ↦′ P)
   uncons-↦ (f ++/↦ g) ≗↦ (uncons-↦ f ++/↦ g)
uncons-≗↦ f g {y} y∈ =
  begin uncons-↦ (f ++/↦ g) y∈  ≡⟨⟩
        (f ++/↦ g) (there y∈)   ≡⟨ sym $ ++/↦-there f g y∈ 
        ((f  there) ++/↦ g) y∈ ≡⟨⟩
        (uncons-↦ f ++/↦ g) y∈  

instance
  ToList-↦ :  {xs : List A}  ToList (xs  B) (A × B)
  ToList-↦ {xs = xs} .toList f = zip xs (codom f)