Source code on Github{-# OPTIONS --allow-unsolved-metas #-}
open import Prelude.Init; open SetAsType
open import Prelude.General
open Integer using () renaming (_-_ to _-ℤ_; _+_ to _+ℤ_)
open import Prelude.DecEq
open import Prelude.Sets
open import Prelude.Maps.Abstract hiding (∅; singleton) renaming (_∪_ to _∪ᵐ_)
open CommandDSL
open import Prelude.Lists
open import Prelude.Apartness
open import Prelude.Semigroup
open import Prelude.Monoid
module Deep.Ledger
(Part : Type)
⦃ _ : DecEq Part ⦄
where
instance _ = Semigroup-ℤ-+; _ = SemigroupLaws-ℤ-+; _ = Monoid-ℤ-+; _ = MonoidLaws-ℤ-+
S : Type
S = Map⟨ Part ↦ ℤ ⟩
data Tx : Type where
_—→⟨_⟩_ : Part → ℤ → Part → Tx
L = List Tx
variable
s s′ s″ s₁ s₂ : S
t t′ t″ : Tx
l l′ l″ l₁ l₂ : L
ls ls′ ls″ : L × S
Domain = S → S
record Denotable (A : Type) : Type where
field
⟦_⟧ : A → Domain
open Denotable {{...}} public
instance
⟦Tx⟧ : Denotable Tx
⟦Tx⟧ .⟦_⟧ (p₁ —→⟨ n ⟩ p₂) s = modify p₂ (_+ℤ n) $ modify p₁ (_-ℤ n) s
⟦L⟧ : Denotable L
⟦L⟧ .⟦_⟧ [] = id
⟦L⟧ .⟦_⟧ (t ∷ l) = ⟦ l ⟧ ∘ ⟦ t ⟧
comp : ∀ x → ⟦ l ++ l′ ⟧ x ≡ (⟦ l′ ⟧ ∘ ⟦ l ⟧) x
comp {l = []} {l′} x = refl
comp {l = t ∷ l} {l′} x rewrite comp {l}{l′} (⟦ t ⟧ x) = refl
infix 0 _—→_ _—→⋆_ _—→⋆′_
data _—→_ : L × S → L × S → Type where
singleStep :
t ∷ l , s —→ l , ⟦ t ⟧ s
data _—→′_ : L × S → S → Type where
finalStep :
([] , s) —→′ s
data _—→⋆_ : L × S → L × S → Type where
base :
ls —→⋆ ls
step :
ls —→ ls′
→ ls′ —→⋆ ls″
→ ls —→⋆ ls″
_—→⋆′_ : L × S → S → Type
ls —→⋆′ s = ls —→⋆ ([] , s)
comp′ :
l , s —→⋆′ s′
→ l′ , s′ —→⋆′ s″
→ l ++ l′ , s —→⋆′ s″
comp′ {l = []} base s′→s″ = s′→s″
comp′ {l = _ ∷ _} (step singleStep s→s′) s′→s″ = step singleStep (comp′ s→s′ s′→s″)
oper-base⋆ : l , s —→⋆′ ⟦ l ⟧ s
oper-base⋆ {l = []} = base
oper-base⋆ {l = _ ∷ _} = step singleStep oper-base⋆
denot⇔oper : (⟦ l ⟧ s ≡ s′) ⇔ (l , s —→⋆′ s′)
denot⇔oper = denot→oper , oper→denot
where
denot→oper : (⟦ l ⟧ s ≡ s′) → (l , s —→⋆′ s′)
denot→oper {l = []} refl = base
denot→oper {l = _ ∷ _} refl = step singleStep (denot→oper refl)
oper→denot : (l , s —→⋆′ s′) → (⟦ l ⟧ s ≡ s′)
oper→denot {l = .[]} base = refl
oper→denot {l = _ ∷ _} (step singleStep p) = oper→denot p
Predˢ = Pred S 0ℓ
data Assertion : Type where
`emp `⊥ : Assertion
_`↦_ : Part → ℤ → Assertion
_`∗_ _`—∗_ : Assertion → Assertion → Assertion
_`∘_ : Assertion → (S → S) → Assertion
infixr 9 _`∘_
fv : Assertion → Set⟨ Part ⟩
fv `emp = ∅
fv `⊥ = ∅
fv (p `↦ _) = singleton p
fv (P `∗ Q) = fv P ∪ fv Q
fv (P `—∗ Q) = fv P ∪ fv Q
fv (P `∘ _) = fv P
emp : Predˢ
emp s = ∀ k → k ∉ᵈ s
_♯_←_ : S → S → S → Type
s₁ ♯ s₂ ← s = ⟨ s₁ ⊎ s₂ ⟩≡ s
_∗_ : Predˢ → Predˢ → Predˢ
(P ∗ Q) s = ∃ λ s₁ → ∃ λ s₂ → (s₁ ♯ s₂ ← s) × P s₁ × Q s₂
_—∗_ : Predˢ → Predˢ → Predˢ
(P —∗ Q) s = ∀ s′ → s′ ♯ s → P s′ → Q (s ∪ᵐ s′)
⟦_⟧ᵖ : Assertion → Predˢ
⟦ `emp ⟧ᵖ = emp
⟦ `⊥ ⟧ᵖ = const ⊥
⟦ p `↦ n ⟧ᵖ = _[ p ↦ n ]∅
⟦ P `∗ Q ⟧ᵖ = ⟦ P ⟧ᵖ ∗ ⟦ Q ⟧ᵖ
⟦ P `—∗ Q ⟧ᵖ = ⟦ P ⟧ᵖ —∗ ⟦ Q ⟧ᵖ
⟦ P `∘ f ⟧ᵖ = ⟦ P ⟧ᵖ ∘ f
infix 1 _`⊢_
_`⊢_ : Assertion → Assertion → Type
P `⊢ Q = ⟦ P ⟧ᵖ ⊢ ⟦ Q ⟧ᵖ
_∙_ : Assertion → S → Type
P ∙ s = ⟦ P ⟧ᵖ s
variable
P P′ P₁ P₂ Q Q′ Q₁ Q₂ R : Assertion
data ⟨_⟩_⟨_⟩ : Assertion → L → Assertion → Type₁ where
base :
⟨ P ⟩ [] ⟨ P ⟩
step :
⟨ P ⟩ l ⟨ R ⟩
→ ⟨ P `∘ ⟦ t ⟧ ⟩ t ∷ l ⟨ R ⟩
weaken-strengthen :
P′ `⊢ P
→ Q `⊢ Q′
→ ⟨ P ⟩ l ⟨ Q ⟩
→ ⟨ P′ ⟩ l ⟨ Q′ ⟩
axiom-base⋆ : ⟨ P `∘ ⟦ l ⟧ ⟩ l ⟨ P ⟩
axiom-base⋆ {P = P} {l = []} = weaken-strengthen {P = P} id id base
axiom-base⋆ {P = P} {l = t ∷ l} = weaken-strengthen {P = (P `∘ ⟦ l ⟧) `∘ ⟦ t ⟧} id id (step axiom-base⋆)
⟦⟧-comm : (⟦ t ⟧ ∘ ⟦ t′ ⟧) s ≡ (⟦ t′ ⟧ ∘ ⟦ t ⟧) s
⟦⟧-comm {t = A —→⟨ n ⟩ B}{t′ = A′ —→⟨ n′ ⟩ B′} = {!!}
denot-comm : (⟦ t ⟧ ∘ ⟦ l ⟧) s ≡ (⟦ l ⟧ ∘ ⟦ t ⟧) s
denot-comm {t = t}{l = []} {s} = refl
denot-comm {t = t}{l = t′ ∷ l}{s}
rewrite sym $ denot-comm {t′}{l}{s}
| sym $ denot-comm {t′}{l}{⟦ t ⟧ s}
| ⟦⟧-comm {t}{t′}{⟦ l ⟧ s}
| denot-comm {t}{l}{s}
| denot-comm {t}{l}{⟦ t′ ⟧ s}
= refl
axiom⇔denot : ⟨ P ⟩ l ⟨ Q ⟩ ⇔ (P `⊢ Q `∘ ⟦ l ⟧)
axiom⇔denot = axiom→denot , denot→axiom
where
axiom→denot : ⟨ P ⟩ l ⟨ Q ⟩ → (P `⊢ Q `∘ ⟦ l ⟧)
axiom→denot base Ps = Ps
axiom→denot (step PlQ) = axiom→denot PlQ
axiom→denot (weaken-strengthen P⊢P′ Q′⊢Q PlQ) = Q′⊢Q ∘ axiom→denot PlQ ∘ P⊢P′
denot→axiom : (P `⊢ Q `∘ ⟦ l ⟧) → ⟨ P ⟩ l ⟨ Q ⟩
denot→axiom {P = P} {Q = Q} {l = []} H
= weaken-strengthen {P = P} {Q = P} {Q′ = Q} id H base
denot→axiom {P = P} {Q = Q} {l = t ∷ l} H
= weaken-strengthen {P′ = P} {P = Q `∘ ⟦ t ∷ l ⟧} {Q = Q} {Q′ = Q} H id (axiom-base⋆ {P = Q} {l = t ∷ l})
axiom⇔oper : ⟨ P ⟩ l ⟨ Q ⟩ ⇔ (∀ {s s′} → P ∙ s → l , s —→⋆′ s′ → Q ∙ s′)
axiom⇔oper
= (λ{ P⊢ Ps s→s′ → subst _ (proj₂ denot⇔oper s→s′) (P⊢ Ps)}) ∘ proj₁ axiom⇔denot
, λ H → proj₂ axiom⇔denot λ Ps → H Ps oper-base⋆
mod : L → Set⟨ Part ⟩
mod [] = ∅
mod (p₁ —→⟨ _ ⟩ p₂ ∷ l) = singleton p₁ ∪ singleton p₂ ∪ mod l
⟦⟧-union :
⟨ s₁ ⊎ s₂ ⟩≡ s
→ ⟨ ⟦ l ⟧ s₁ ⊎ ⟦ l ⟧ s₂ ⟩≡ ⟦ l ⟧ s
⟦⟧-union s₁⊎s₂ = {!!} , {!!}
postulate
⟦⟧-♯ :
s₁ ♯ s₂ ← s
→ ⟦ l ⟧ s₁ ♯ ⟦ l ⟧ s₂ ← ⟦ l ⟧ s
frame :
mod l ♯ fv R
→ R ∙ s
→ R ∙ ⟦ l ⟧ s
frame = {!!}
[FRAME] :
⟨ P ⟩ l ⟨ Q ⟩
→ mod l ♯ fv R
→ ⟨ P `∗ R ⟩ l ⟨ Q `∗ R ⟩
[FRAME] {P}{l}{Q}{R} PlQ mod♯fv = proj₂ axiom⇔denot d
where
d : (P `∗ R) `⊢ (Q `∗ R) `∘ ⟦ l ⟧
d {s} (s₁ , s₂ , s₁♯s₂ , Ps₁ , Rs₂) = ⟦ l ⟧ s₁ , ⟦ l ⟧ s₂ , p , Qs₁′ , Rs₂′
where
Qs₁′ : Q ∙ ⟦ l ⟧ s₁
Qs₁′ = proj₁ axiom⇔denot PlQ Ps₁
Rs₂′ : R ∙ ⟦ l ⟧ s₂
Rs₂′ = frame {l = l} {R = R} {s = s₂} mod♯fv Rs₂
p : ⟦ l ⟧ s₁ ♯ ⟦ l ⟧ s₂ ← ⟦ l ⟧ s
p = ⟦⟧-♯ {s₁}{s₂}{s}{l} s₁♯s₂