Source code on Github
---------------------------------------
-- ** Concurrent separation logic (CSL)

module EUTxOErr.CSL where

open import Prelude.Init
open import Prelude.InferenceRules
open import Prelude.Lists.Interleaving

open import EUTxOErr.EUTxO
open import EUTxOErr.Ledger
open import EUTxOErr.HoareLogic
open import EUTxOErr.SL

⊎-interleave :
   (l₁  l₂  l)
    s₁  s₂ ⟩≡ s
    l₁  s₁  just s₁′
    l₂  s₂  just s₂′
    ───────────────────────────
     λ s′  ( l  s  just s′)
           × ( s₁′  s₂′ ⟩≡ s′)
⊎-interleave {.[]} {.[]} {.[]} {s₁} {s₂} {s} {.s₁} {.s₂} [] ≡s refl refl
  = s , refl , ≡s
⊎-interleave {t  l₁} {l₂} {.t  l} {s₁} {s₂} {s} {s₁′} {s₂′} (keepˡ ≡l) ≡s ls₁  ls₂
  with  t ⟧ₑ s₁ in ⟦t⟧s≡
... | just ⟦t⟧s₁
  with  t ⟧ₑ s | ⊎-⟦⟧ᵗ {t = t} {s₁ = s₁} {s₂ = s₂} ⟦t⟧s₁ ⟦t⟧s≡ ≡s
... | just ⟦t⟧s | ret↑ ≡s′
  = ⊎-interleave ≡l ≡s′ ls₁ ls₂
⊎-interleave {l₁} {t  l₂} {.t  l} {s₁} {s₂} {s} {s₁′} {s₂′} (keepʳ ≡l) ≡s ls₁  ls₂
  with  t ⟧ₑ s₂ in ⟦t⟧s≡
... | just ⟦t⟧s₂
  with  t ⟧ₑ s | ⊎-⟦⟧ᵗ˘ {t = t} {s₂ = s₂} {s₁ = s₁} ⟦t⟧s₂ ⟦t⟧s≡ ≡s
... | just ⟦t⟧s | ret↑ ≡s′
  = ⊎-interleave ≡l ≡s′ ls₁ ls₂

-- ** Proof of CSL's [PAR] rule, which allows for modular reasoning.
[PAR] :
   l₁  l₂  l
    P₁  l₁  Q₁ 
    P₂  l₂  Q₂ 
    ─────────────────────────
     P₁  P₂  l  Q₁  Q₂ 
[PAR] {l₁} {l₂} {l} ≡l Pl₁Q Pl₂Q {s} (s₁ , s₂ , ≡s , Ps₁ , Ps₂)
  with  l₁ ⟧ₑ s₁ in ls₁ | Pl₁Q Ps₁
... | just s₁′ | M.Any.just Qs₁′
  with  l₂ ⟧ₑ s₂ in ls₂ | Pl₂Q Ps₂
... | just s₂′ | M.Any.just Qs₂′
  with s′ , ls , ≡s′⊎-interleave ≡l ≡s ls₁ ls₂
  rewrite ls
  = M.Any.just (s₁′ , s₂′ , ≡s′ , Qs₁′ , Qs₂′)

open HoareReasoning

ℝ[PAR] :
   l₁  l₂  l
   ℝ⟨ P₁  l₁  Q₁ 
   ℝ⟨ P₂  l₂  Q₂ 
    ─────────────────────────
    ℝ⟨ P₁  P₂  l  Q₁  Q₂ 
ℝ[PAR] ≡l PlQ PlQ′ = mkℝ [PAR] ≡l (begin PlQ) (begin PlQ′)