Source code on Githubopen import Prelude.Init; open SetAsType
open import Prelude.General
open Integer using () renaming (_-_ to _-ℤ_; _+_ to _+ℤ_)
open import Prelude.DecEq
open import Prelude.Sets.Abstract
open import Prelude.Maps.Abstract hiding (singleton; _∪_; ∅); open CommandDSL
open import Prelude.Apartness
open import Prelude.Semigroup
open import Prelude.Monoid
module Middle.Ledger
(Part : Type)
⦃ _ : DecEq Part ⦄
where
instance _ = Semigroup-ℤ-+; _ = SemigroupLaws-ℤ-+; _ = Monoid-ℤ-+; _ = MonoidLaws-ℤ-+
S : Type
S = Map⟨ Part ↦ ℤ ⟩
data Tx : Type where
_—→⟨_⟩_ : Part → ℤ → Part → Tx
L = List Tx
variable
s s′ s″ s₁ s₂ : S
t t′ t″ : Tx
l l′ l″ : L
ls ls′ ls″ : L × S
Domain = S → S
record Denotable (A : Type) : Type where
field
⟦_⟧ : A → Domain
open Denotable {{...}} public
instance
⟦Tx⟧ : Denotable Tx
⟦Tx⟧ .⟦_⟧ (p₁ —→⟨ n ⟩ p₂) = modify p₂ (_+ℤ n) ∘ modify p₁ (_-ℤ n)
⟦L⟧ : Denotable L
⟦L⟧ .⟦_⟧ [] s = s
⟦L⟧ .⟦_⟧ (t ∷ l) = ⟦ l ⟧ ∘ ⟦ t ⟧
comp : ∀ x → ⟦ l ++ l′ ⟧ x ≡ (⟦ l′ ⟧ ∘ ⟦ l ⟧) x
comp {l = []} {l′} x = refl
comp {l = t ∷ l} {l′} x rewrite comp {l}{l′} (⟦ t ⟧ x) = refl
infix 0 _—→_ _—→⋆_ _—→⋆′_
data _—→_ : L × S → L × S → Type where
singleStep :
t ∷ l , s —→ l , ⟦ t ⟧ s
data _—→′_ : L × S → S → Type where
finalStep :
([] , s) —→′ s
data _—→⋆_ : L × S → L × S → Type where
base :
ls —→⋆ ls
step :
ls —→ ls′
→ ls′ —→⋆ ls″
→ ls —→⋆ ls″
_—→⋆′_ : L × S → S → Type
ls —→⋆′ s = ls —→⋆ ([] , s)
comp′ : l , s —→⋆′ s′
→ l′ , s′ —→⋆′ s″
→ l ++ l′ , s —→⋆′ s″
comp′ {l = []} base s′→s″ = s′→s″
comp′ {l = _ ∷ _} (step singleStep s→s′) s′→s″ = step singleStep (comp′ s→s′ s′→s″)
oper-base⋆ : l , s —→⋆′ ⟦ l ⟧ s
oper-base⋆ {[]} = base
oper-base⋆ {_ ∷ _} = step singleStep oper-base⋆
denot⇔oper : (⟦ l ⟧ s ≡ s′) ⇔ (l , s —→⋆′ s′)
denot⇔oper = denot→oper , oper→denot
where
denot→oper : (⟦ l ⟧ s ≡ s′) → (l , s —→⋆′ s′)
denot→oper {l = []} refl = base
denot→oper {l = _ ∷ _} refl = step singleStep (denot→oper refl)
oper→denot : (l , s —→⋆′ s′) → (⟦ l ⟧ s ≡ s′)
oper→denot {l = .[]} base = refl
oper→denot {l = _ ∷ _} (step singleStep p) = oper→denot p
Predˢ = Pred S 0ℓ
variable
P P′ P₁ P₂ Q Q′ Q₁ Q₂ R : Predˢ
data ⟨_⟩_⟨_⟩ : Predˢ → L → Predˢ → Type₁ where
base :
⟨ P ⟩ [] ⟨ P ⟩
step :
⟨ P ⟩ l ⟨ R ⟩
→ ⟨ P ∘ ⟦ t ⟧ ⟩ t ∷ l ⟨ R ⟩
weaken-strengthen :
P′ ⊢ P
→ Q ⊢ Q′
→ ⟨ P ⟩ l ⟨ Q ⟩
→ ⟨ P′ ⟩ l ⟨ Q′ ⟩
axiom-base⋆ : ⟨ P ∘ ⟦ l ⟧ ⟩ l ⟨ P ⟩
axiom-base⋆ {l = []} = base
axiom-base⋆ {l = _ ∷ _} = step axiom-base⋆
postulate
⟦⟧-comm : (⟦ t ⟧ ∘ ⟦ t′ ⟧) s ≡ (⟦ t′ ⟧ ∘ ⟦ t ⟧) s
denot-comm : (⟦ t ⟧ ∘ ⟦ l ⟧) s ≡ (⟦ l ⟧ ∘ ⟦ t ⟧) s
denot-comm {t}{[]} {s} = refl
denot-comm {t}{t′ ∷ l}{s}
rewrite sym $ denot-comm {t′}{l}{s}
| sym $ denot-comm {t′}{l}{⟦ t ⟧ s}
| ⟦⟧-comm {t}{t′}{⟦ l ⟧ s}
| denot-comm {t}{l}{s}
| denot-comm {t}{l}{⟦ t′ ⟧ s}
= refl
axiom⇔denot : ⟨ P ⟩ l ⟨ Q ⟩ ⇔ (P ⊢ Q ∘ ⟦ l ⟧)
axiom⇔denot = axiom→denot , denot→axiom
where
axiom→denot : ⟨ P ⟩ l ⟨ Q ⟩ → (P ⊢ Q ∘ ⟦ l ⟧)
axiom→denot base Ps = Ps
axiom→denot (step PlQ) = axiom→denot PlQ
axiom→denot (weaken-strengthen P⊢P′ Q′⊢Q PlQ) = Q′⊢Q ∘ axiom→denot PlQ ∘ P⊢P′
denot→axiom : (P ⊢ Q ∘ ⟦ l ⟧) → ⟨ P ⟩ l ⟨ Q ⟩
denot→axiom {l = []} H = weaken-strengthen (λ x → x) H base
denot→axiom {l = _ ∷ _} H = weaken-strengthen H (λ x → x) axiom-base⋆
axiom⇔oper : ⟨ P ⟩ l ⟨ Q ⟩ ⇔ (∀ {s s′} → P s → l , s —→⋆′ s′ → Q s′)
axiom⇔oper
= (λ{ P⊢ Ps s→s′ → subst _ (proj₂ denot⇔oper s→s′) (P⊢ Ps)}) ∘ proj₁ axiom⇔denot
, λ H → proj₂ axiom⇔denot λ Ps → H Ps oper-base⋆
mod : L → Set⟨ Part ⟩
mod [] = ∅
mod (p₁ —→⟨ _ ⟩ p₂ ∷ l) = singleton p₁ ∪ singleton p₂ ∪ mod l
■_ : Type → Predˢ
■_ = const
_`∧_ : Predˢ → Predˢ → Predˢ
(P `∧ Q) s = P s × Q s
infix 4 _∗_
_∗_ : Predˢ → Predˢ → Predˢ
(P ∗ Q) s = ∃ λ s₁ → ∃ λ s₂ → ⟨ s₁ ⊎ s₂ ⟩≡ s × P s₁ × Q s₂
[SEP-COMM] : P ∗ Q ⊢ Q ∗ P
[SEP-COMM] {s} (s₁ , s₂ , s₁⊎s₂ , Ps₁ , Qs₂) = (s₂ , s₁ , ∪≡-comm s₁⊎s₂ , Qs₂ , Ps₁)