Source code on Github
open import Prelude.Init; open SetAsType
open L.Mem
open import Prelude.DecEq
open import Prelude.Decidable
open import Prelude.Ord
open import Prelude.General
open import Prelude.InferenceRules
open import Prelude.Apartness
open import Prelude.Semigroup
open import Prelude.Functor
open import Prelude.Monoid
open import Prelude.Setoid
module ValueSep.StrongSL (Part : Type) ⦃ _ : DecEq Part ⦄ where
open import ValueSep.Maps
open import ValueSep.Ledger Part ⦃ it ⦄
open import ValueSep.StrongHoareLogic Part ⦃ it ⦄
≈-[↝] : ∀ (A : Part) s s′ {f : Op₁ ℕ} →
s ≈ s′
──────────────────────────
s [ A ↝ f ] ≈ s′ [ A ↝ f ]
≈-[↝] A s s′ s≈ k rewrite s≈ k = refl
≈-[↝]² : ∀ (A B : Part) s s′ {f g : Op₁ ℕ} →
s ≈ s′
──────────────────────────────────────────────
s [ A ↝ f ] [ B ↝ g ] ≈ s′ [ A ↝ f ] [ B ↝ g ]
≈-[↝]² A B s s′ s≈ k rewrite s≈ k = refl
◇≡-[↝+] : ∀ A v →
A ∈ᵈ s₁
────────────────────────────────────────────────────────
⟨ (s₁ [ A ↝ (_+ v) ]) ◇ s₂ ⟩≡ ((s₁ ◇ s₂) [ A ↝ (_+ v) ])
◇≡-[↝+] {s₁ = s₁} {s₂ = s₂} A v A∈ k
with k ≟ A
◇≡-[↝+] {s₁ = s₁} {s₂ = s₂} A v A∈ k | yes refl
with s₁ A | A∈
... | just v₁ | _
with s₂ A
... | nothing = refl
... | just v₂ rewrite Nat.+-assoc v₁ v v₂ | Nat.+-comm v v₂ | sym $ Nat.+-assoc v₁ v₂ v = refl
◇≡-[↝+] {s₁ = s₁} {s₂ = s₂} A v A∈ k | no _
with s₁ k | s₂ k
... | nothing | nothing = refl
... | nothing | just _ = refl
... | just _ | nothing = refl
... | just _ | just _ = refl
◇≡-[↝∸] : ∀ A v vᵃ →
∙ (_[_↦_] s₁ A vᵃ)
∙ v ≤ vᵃ
────────────────────────────────────────────────────────
⟨ (s₁ [ A ↝ (_∸ v) ]) ◇ s₂ ⟩≡ ((s₁ ◇ s₂) [ A ↝ (_∸ v) ])
◇≡-[↝∸] {s₁ = s₁} {s₂ = s₂} A v vᵃ A∈ v≤ k
with k ≟ A
◇≡-[↝∸] {s₁ = s₁} {s₂ = s₂} A v vᵃ A∈ v≤ k | yes refl
with s₁ A | A∈
... | .(just vᵃ) | refl
with s₂ A
... | nothing = refl
... | just _ = cong just $ sym $ Nat.+-∸-comm _ v≤
◇≡-[↝∸] {s₁ = s₁} {s₂ = s₂} A v vᵃ A∈ v≤ k | no _
with s₁ k | s₂ k
... | nothing | nothing = refl
... | nothing | just _ = refl
... | just _ | nothing = refl
... | just _ | just _ = refl
◇-⟦⟧ᵗ : ∀ s₁′ →
∙ ⟦ t ⟧ s₁ ≡ just s₁′
∙ ⟨ s₁ ◇ s₂ ⟩≡ s
────────────────────────────────
lift↑ (⟨ s₁′ ◇ s₂ ⟩≡_) (⟦ t ⟧ s)
◇-⟦⟧ᵗ {t@(A —→⟨ v ⟩ B)}{s₁}{s₂}{s} s₁′ ⟦t⟧s≡ ≡s
rewrite sym $ ≡s A | sym $ ≡s B
with s₁ A in As₁ | s₁ B in Bs₁
... | just vᵃ | just vᵇ
with ↦-◇ˡ {s₁ = s₁}{A}{vᵃ}{s₂} As₁ | ↦-◇ˡ {s₁ = s₁}{B}{vᵇ}{s₂} Bs₁
... | .(s₂ ⁉⁰ A) , refl , p | .(s₂ ⁉⁰ B) , refl , q
with v ≤? vᵃ
... | yes v≤
rewrite sym (M.just-injective ⟦t⟧s≡)
rewrite just-◇ˡ vᵃ (s₂ A) | just-◇ˡ vᵇ (s₂ B)
with v ≤? vᵃ ◇ (s₂ ⁉⁰ A)
... | no v≰ = ⊥-elim $ v≰ $ Nat.≤-stepsʳ (s₂ ⁉⁰ A) $ v≤
... | yes _ = ret↑ qed
where
_s₁′ = s₁ [ A ↝ (_∸ v) ] [ B ↝ (_+ v) ]
_s′ = s [ A ↝ (_∸ v) ] [ B ↝ (_+ v) ]
B∈₁ : B ∈ᵈ s₁
B∈₁ rewrite Bs₁ = auto
B∈₁′ : B ∈ᵈ (s₁ [ A ↝ (_∸ v) ])
B∈₁′ = [↝]-mono A (_∸ v) s₁ B B∈₁
qed : ⟨ _s₁′ ◇ s₂ ⟩≡ _s′
qed =
begin
_s₁′ ◇ s₂
≈⟨ ◇≡-[↝+] {s₁ = s₁ [ A ↝ (_∸ v) ]} {s₂ = s₂} B v B∈₁′ ⟩
((s₁ [ A ↝ (_∸ v) ]) ◇ s₂) [ B ↝ (_+ v) ]
≈⟨ (λ k → cong (fmap (if k == B then (_+ v) else id)) $ ◇≡-[↝∸] {s₁ = s₁} {s₂ = s₂} A v vᵃ As₁ v≤ k) ⟩
(s₁ ◇ s₂) [ A ↝ (_∸ v) ] [ B ↝ (_+ v) ]
≈⟨ ≈-[↝]² A B (s₁ ◇ s₂) s ≡s ⟩
_s′
∎ where open ≈-Reasoning
◇-⟦⟧ᵗ˘ : ∀ s₂′ →
∙ ⟦ t ⟧ s₂ ≡ just s₂′
∙ ⟨ s₁ ◇ s₂ ⟩≡ s
────────────────────────────────
lift↑ (⟨ s₁ ◇ s₂′ ⟩≡_) (⟦ t ⟧ s)
◇-⟦⟧ᵗ˘ {t@(A —→⟨ v ⟩ B)}{s₂}{s₁}{s} s₂′ ⟦t⟧s≡ ≡s
with ⟦ t ⟧ s | ◇-⟦⟧ᵗ {t = t}{s₂}{s₁} s₂′ ⟦t⟧s≡ (◇≡-comm {x = s₁}{s₂} ≡s)
... | just _ | ret↑ ≡s′ = ret↑ (◇≡-comm {x = s₂′}{s₁} ≡s′)
◇-⟦⟧ : ∀ s₁′ →
∙ ⟦ l ⟧ s₁ ≡ just s₁′
∙ ⟨ s₁ ◇ s₂ ⟩≡ s
────────────────────────────────
lift↑ (⟨ s₁′ ◇ s₂ ⟩≡_) (⟦ l ⟧ s)
◇-⟦⟧ {l = []} _ refl p = ret↑ p
◇-⟦⟧ {l = t ∷ l} {s₁ = s₁} {s₂} {s} s₁″ eq ≡s
with ⟦ t ⟧ s₁ in ⟦t⟧s≡
... | just s₁′
with ⟦ t ⟧ s | ◇-⟦⟧ᵗ {t = t} {s₁ = s₁} {s₂ = s₂} s₁′ ⟦t⟧s≡ ≡s
... | just s′ | ret↑ s₁′◇s₂≡s′
with ⟦ l ⟧ s₁′ in ⟦l⟧s≡ | eq
... | just .s₁″ | refl
= ◇-⟦⟧ {l = l} {s₁ = s₁′} {s₂ = s₂} s₁″ ⟦l⟧s≡ s₁′◇s₂≡s′
◇-⟦⟧˘ : ∀ s₂′ →
∙ ⟦ l ⟧ s₂ ≡ just s₂′
∙ ⟨ s₁ ◇ s₂ ⟩≡ s
────────────────────────────────
lift↑ (⟨ s₁ ◇ s₂′ ⟩≡_) (⟦ l ⟧ s)
◇-⟦⟧˘ {l = l} {s₂ = s₂} {s₁} {s} s₂′ eq ≡s
with ⟦ l ⟧ s | ◇-⟦⟧ {l = l} {s₁ = s₂} {s₁} {s} s₂′ eq (◇≡-comm {x = s₁}{s₂} ≡s)
... | just _ | ret↑ ≡s′ = ret↑ (◇≡-comm {x = s₂′}{s₁} ≡s′)
[FRAME] : ∀ R →
⟨ P ⟩ l ⟨ Q ⟩
─────────────────────
⟨ P ∗ R ⟩ l ⟨ Q ∗ R ⟩
[FRAME] {P}{l}{Q} R PlQ {s} (s₁ , s₂ , ≡s , Ps₁ , Rs₂)
with ⟦ l ⟧ s₁ in s₁≡ | PlQ Ps₁
... | .just s₁′ | ret↑ Qs₁′
with ⟦ l ⟧ s in s≡ | ◇-⟦⟧ {l = l} {s₁ = s₁} {s₂ = s₂} s₁′ s₁≡ ≡s
... | .just s′ | ret↑ ≡s′
= ret↑ (s₁′ , s₂ , ≡s′ , Qs₁′ , Rs₂)
open HoareReasoning
ℝ[FRAME] : ∀ R →
ℝ⟨ P ⟩ l ⟨ Q ⟩
─────────────────────
ℝ⟨ P ∗ R ⟩ l ⟨ Q ∗ R ⟩
ℝ[FRAME] {l = l} R PlQ = mkℝ [FRAME] {l = l} R (begin PlQ)