Source code on Github
-------------------------
-- ** Axiomatic semantics

open import Prelude.Init; open SetAsType
open import Prelude.General
open import Prelude.DecEq
open import Prelude.Decidable
open import Prelude.Semigroup
open import Prelude.Monoid
open import Prelude.InferenceRules
open import Prelude.Ord
open import Prelude.Monad

module ValueSepSimple.HoareLogic (Part : Type)  _ : DecEq Part  where

open import ValueSepSimple.Maps
open import ValueSepSimple.Ledger Part

-- ** Shallow embedding of logic formulas/propositions.
Assertion = Pred₀ S

variable P P′ P₁ P₂ Q Q′ Q₁ Q₂ R : Assertion

emp : Assertion
emp m =  k  m k  0

_∗_ : Op₂ Assertion
(P  Q) s =  λ s₁   λ s₂   s₁  s₂ ⟩≡ s × P s₁ × Q s₂

_↦_ : Part    Assertion
p  n = _[ p  n ]
-- T0D0: fix to _[ p ↦ n ]∅

infixr 10 _∗_
infix  11 _↦_

-- ** Hoare triples.
weak↑ strong↑ : Pred₀ S  Pred₀ (Maybe S)
weak↑   = M.All.All
strong↑ = M.Any.Any

infixl 4 _↑∘_
_↑∘_ : Pred₀ S  (S  Maybe S)  Pred₀ S
P ↑∘ f = strong↑ P  f

lift↑ = strong↑
pattern ret↑ x = M.Any.just x

map↑ : P ⊆¹ Q  lift↑ P ⊆¹ lift↑ Q
map↑ = M.Any.map

⟨_⟩_⟨_⟩ : Assertion  L  Assertion  Type
 P  l  Q  = P  Q ↑∘  l 

hoare-base :
  ──────────────
   P  []  P 
hoare-base = ret↑

module _ (f : S  Maybe S) where
  lift∘>>= :  {ms}
     lift↑ (lift↑ P  f) ms
     lift↑ P (ms >>= f)
  lift∘>>= (ret↑ p) = p

  lift∘>>=˘ :  {ms : Maybe S}
     lift↑ P (ms >>= f)
     lift↑ (lift↑ P  f) ms
  lift∘>>=˘ {ms = just s} p = ret↑ p

  lift∘=<<  = lift∘>>=
  lift∘=<<˘ = lift∘>>=˘

module _ (f g : S  Maybe S) where
  lift²∘>=> : (P ↑∘ g ↑∘ f)  (P ↑∘ (f >=> g))
  lift²∘>=> = lift∘=<< _

  lift²∘>=>˘ : (P ↑∘ (f >=> g))  (P ↑∘ g ↑∘ f)
  lift²∘>=>˘ = lift∘=<<˘ _

hoare-step :
   P  l  Q 
  ──────────────────────────
   P ↑∘  t   t  l  Q 
hoare-step {t = t} PlQ {s} = lift²∘>=>  t  _ {x = s}  map↑ PlQ

consequence :
   P′  P   -- ^ weakening the pre-condition
   Q   Q′  -- ^ strengthening the post-condition
    P   l  Q  
    ───────────────
     P′  l  Q′ 
consequence ⊢P Q⊢ PlQ = map↑ Q⊢  PlQ  ⊢P

-- Utilities for Hoare triples.
weaken : P′  P   P  l  Q    P′  l  Q 
weaken {l = l} H = consequence {l = l} H id

strengthen : Q  Q′   P  l  Q    P  l  Q′ 
strengthen {l = l} H = consequence {l = l} id H

axiom-base⋆ :  P ↑∘  l   l  P 
axiom-base⋆ {P = P} {l = []} = weaken {P′ = P ↑∘  [] } {l = []}  where (ret↑ p)  p) hoare-base
axiom-base⋆ {P = P} {l = t  l} = map↑ id

-- Derived alternative formulation for step, using list concatenation.

hoare-step′ :
    P  l   Q 
    Q  l′  R 
    ───────────────────
     P  l ++ l′  R 
hoare-step′ {P}{l}{Q}{l′}{R} PlQ QlR
--   {s} Ps rewrite comp {l}{l′} s
--   with ⟦ l ⟧ s | PlQ Ps
-- ... | .(just _) | ret↑ Qs′ = QlR Qs′
  = begin
    P
  ⊢⟨ PlQ  
    Q ↑∘  l 
  ⊢⟨ map↑ QlR 
    R ↑∘  l′  ↑∘  l 
  ⊢⟨ lift²∘>=>  l   l′   
    R ↑∘ ( l  >=>  l′ )
  ≗˘⟨ cong (lift↑ R)  comp {l}{l′} 
    R ↑∘  l ++ l′ 
   where open ⊢-Reasoning

-- ** Reasoning syntax for Hoare triples.
module HoareReasoning where
  -- Reasoning newtype (for better type inference).
  record ℝ⟨_⟩_⟨_⟩ (P : Assertion) (l : L) (Q : Assertion) : Type where
    constructor mkℝ_
    field begin_ :  P  l  Q 
    infix -2 begin_
  open ℝ⟨_⟩_⟨_⟩ public
  infix  -2 mkℝ_
  infixr -1 _~⟪_⟩_ _~⟨_⟫_ _~⟨_∶-_⟩_ _~⟨_∶-_⟩++_
  infix  0  _∎

  -- weakening syntax
  _~⟪_⟩_ :  P′  P′  P  ℝ⟨ P  l  R   ℝ⟨ P′  l  R 
  _~⟪_⟩_ {l = l} _ H PlR = mkℝ weaken {l = l} H (begin PlR)

  -- strengthening syntax
  _~⟨_⟫_ :  R′  R  R′  ℝ⟨ P  l  R   ℝ⟨ P  l  R′ 
  _~⟨_⟫_ {l = l} _ H PlR = mkℝ strengthen {l = l} H (begin PlR)

  -- step syntax
  _~⟨_∶-_⟩_ :  P′ t  ℝ⟨ P′  [ t ]  P   ℝ⟨ P  l  R   ℝ⟨ P′  t  l  R 
  _~⟨_∶-_⟩_ {l = l} {R = R} P′ t H PlR =
    -- P′ ~⟪ begin H ⟩ (mkℝ (λ {x} Px → hoare-step {l = l} {t = t} (begin PlR) {_} Px))
    mkℝ go
    where
      go : P′  R ↑∘  t  l 
      go {s} P′s with  t  s | (begin H) P′s
      ... | just _ | ret↑ Ps′ = (begin PlR) Ps′

  -- step′ syntax
  _~⟨_∶-_⟩++_ :  P′  (l : L)  ℝ⟨ P′  l  P   ℝ⟨ P  l′  R   ℝ⟨ P′  l ++ l′  R 
  P′ ~⟨ l ∶- H ⟩++ PlR = mkℝ hoare-step′ {l = l} (begin H) (begin PlR)

  _∎ :  P  ℝ⟨ P  []  P 
  p  = mkℝ hoare-base {P = p}