Source code on Github
{-# OPTIONS --rewriting #-}
module ValueSepUTxO.Example where

open import Agda.Builtin.Equality.Rewrite

open import Prelude.Init; open SetAsType
open Nat hiding (_≥_)
open import Prelude.General
open import Prelude.DecEq
open import Prelude.Decidable
open import Prelude.Lists hiding (_↦_)
open import Prelude.Lists.Dec
open import Prelude.Ord
open import Prelude.InferenceRules

open import Prelude.Bags
open import ValueSepUTxO.UTxO
open import ValueSepUTxO.Ledger
open import ValueSepUTxO.HoareLogic
open import ValueSepUTxO.HoareProperties
open import ValueSepUTxO.SL
open import ValueSepUTxO.CSL

A B C D : Address
A = 111; B = 222; C = 333; D = 444

postulate t₀ : Tx
t₀₀ = (t₀ ) at 0
t₀₁ = (t₀ ) at 1

postulate
  mkValidator : TxOutput  (TxInfo  DATA  Bool)
  in₁ : (mkValidator t₀₀)   A
  in₂ : (mkValidator t₀₁)   D
{-# REWRITE in₁ #-}
{-# REWRITE in₂ #-}

_—→⟨_∣_⟩_ : Address  Value  TxOutput  Address  Tx
A —→⟨ v  or  B = record
  { inputs  = [ record { outputRef = or ; validator = mkValidator or; redeemer = 0 } ]
  ; outputs = [ v at B ]
  ; forge   = 0
  }

t₁ t₂ t₃ t₄ : Tx
-- t₀ = record {inputs = []; outputs = 1 at A ∷ 1 at D ∷ []; forge = 2}
t₁ = A —→⟨ 1  t₀₀  B
t₂ = D —→⟨ 1  t₀₁  C

t₁₀ = (t₁ ) at 0
t₂₀ = (t₂ ) at 0
postulate
  in₃ : (mkValidator t₁₀)   B
  in₄ : (mkValidator t₂₀)   C
{-# REWRITE in₃ #-}
{-# REWRITE in₄ #-}

t₃ = B —→⟨ 1  t₁₀  A
t₄ = C —→⟨ 1  t₂₀  D

t₁-₄ = L  t₁  t₂  t₃  t₄  []

open HoareReasoning
module _ A B {or} {_ : auto∶ A  B} where postulate
  _↝_ : ℝ⟨ A  1  B  0  [ A —→⟨ 1  or  B ]  A  0  B  1 
  _↜_ : ℝ⟨ A  0  B  1  [ B —→⟨ 1  or  A ]  A  1  B  0 

-- proof using only SL.[FRAME]
h :  A  1  B  0  C  0  D  1 
    t₁-₄
     A  1  B  0  C  0  D  1 
h = begin A  1  B  0  C  0  D  1   ~⟪  {x}  ∗↝ {x = x}) 
          (A  1  B  0)  C  0  D  1 ~⟨ t₁ ∶- ℝ[FRAME] (C  0  D  1) (A  B) 
          (A  0  B  1)  C  0  D  1 ~⟪  {x}  ∗↔ {x = x}) 
          (C  0  D  1)  A  0  B  1 ~⟨ t₂ ∶- ℝ[FRAME] (A  0  B  1) (C  D) 
          (C  1  D  0)  A  0  B  1 ~⟪  {x}  ∗↔ {x = x}) 
          (A  0  B  1)  C  1  D  0 ~⟨ t₃ ∶- ℝ[FRAME] (C  1  D  0) (A  B) 
          (A  1  B  0)  C  1  D  0 ~⟪  {x}  ∗↔ {x = x}) 
          (C  1  D  0)  A  1  B  0 ~⟨ t₄ ∶- ℝ[FRAME] (A  1  B  0) (C  D) 
          (C  0  D  1)  A  1  B  0 ~⟪  {x}  ∗↔ {x = x}) 
          (A  1  B  0)  C  0  D  1 ~⟪  {x}  ↜∗ {x = x}) 
          A  1  B  0  C  0  D  1   

-- 1b) proof using CSL.[INTERLEAVE]
_ :  A  1  B  0  C  0  D  1 
     t₁-₄
      A  1  B  0  C  0  D  1 
_ = begin A  1  B  0  C  0  D  1   ~⟪  {x}  ∗↝ {x = x}) 
          (A  1  B  0)  C  0  D  1 ~⟨ t₁-₄ ∶- ℝ[PAR] (keepˡ keepʳ keepˡ keepʳ []) H₁ H₂ ⟩++
          (A  1  B  0)  C  0  D  1 ~⟪  {x}  ↜∗ {x = x}) 
          A  1  B  0  C  0  D  1   
  where
    H₁ : ℝ⟨ A  1  B  0  t₁  t₃  []  A  1  B  0 
    H₁ = A  1  B  0 ~⟨ t₁ ∶- A  B 
         A  0  B  1 ~⟨ t₃ ∶- A  B 
         A  1  B  0 

    H₂ : ℝ⟨ C  0  D  1  t₂  t₄  []  C  0  D  1 
    H₂ = C  0  D  1 ~⟨ t₂ ∶- C  D 
         C  1  D  0 ~⟨ t₄ ∶- C  D 
         C  0  D  1 


-- ** split example
module _ (A : Address) (n : Value) where postulate
  split : Tx
  split-semantics :  A  n  [ split ]  A   n /2⌋  A   n /2⌉ 

split-ex :  A  100  [ split A 100 ]  A  50  A  50 
split-ex = split-semantics A 100

-- ** escrow example
module ESCROW (A B : Address) (n m : Value) where postulate
  init : Tx
  init-semantics : ℝ⟨ P  [ init ]  P 

  contribute : Address  Value  Tx
  contribute-semanticsA :  {v}  _ : auto∶ v  m   ℝ⟨ A  v  [ contribute A m ]  A  (v  m) 
  contribute-semanticsB : ℝ⟨ B  n  [ contribute B n ]  B  0 

  payout : Tx
  payout-semantics :  {v}  ℝ⟨ B  v  [ payout ]  B  (v + n + m) 

escrow-ex : let open ESCROW A B 10 20 in
   B  10  A  50 
  init  contribute B 10  contribute A 20  payout  []
   B  30  A  30 
escrow-ex = let open ESCROW A B 10 20 in begin
  B  10  A  50 ~⟨ init ∶- init-semantics 
  B  10  A  50 ~⟨ contribute B 10 ∶- ℝ[FRAME] (A  50) contribute-semanticsB 
  B   0  A  50 ~⟪  {x}  ∗↔ {x = x}) 
  A  50  B   0 ~⟨ contribute A 20 ∶- ℝ[FRAME] (B  0)  contribute-semanticsA 
  A  30  B   0 ~⟪  {x}  ∗↔ {x = x}) 
  B  0   A  30 ~⟨ payout ∶- ℝ[FRAME] (A  30) payout-semantics 
  B  30  A  30 

-- -- ** crowdfunding example

-- -- ** final example
-- postulate
--   txs : Ledger
--   -- ≈ [split(A,100,50,50)]
--   -- ∥ ESCROW.[init(A,B,10,30), contribute(B,10), contribute(A,30), payout()]
--   -- ∥ CROWDFUNDING.[contribute(A,50), contribute(C,1000)]
--   final-ex : ⟨ B ↦ 10 ∗ A ↦ 100 ∗ C ↦ 1000 ⟩ txs ⟨ B ↦ 30 ∗ A → 0 ∗ C ↦ 0 ⟩
--            -- ∩ CROWDFUNDING.state == SUCCESS

-- ** fraud detection

VL∅ : Pred₀ L
VL∅ = VL 

-- utxo : L → S
-- utxo l = ⟦ l ⟧ ∅

compress :
   l₁  l₂  l
    P  l₁  P 
    Q  l₂  Q′ 
    ──────────────────────
     P  Q  l  P  Q′ 
compress = [PAR]

detect :  (l₁ l₂ l : L) (vl : VL∅ l) 
   l₁  l₂  l
    P  l₁  P 
    Q  l₂  Q′ 
    ───────────────────────
     P  Q  l₂  P  Q′ 
    -- ∙ ⟦ l₁ ⟧ ≈ ⟦ [] ⟧
    -- ∙ ⟦ l ⟧ ≈ ⟦ l₁ ∥ l₂ ⟧ ≈ ⟦ l₂ ⟧
    -- ∙ ⟨ P ∗ Q ⟩ l ⟨ P ∗ Q′ ⟩
detect {P}{Q}{Q′} l₁ l₂ l vl ≡l Pl₁ = [FRAME]˘ {l = l₂} P