Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Data.Maybe.Relation.Binary.Connected where
open import Level
open import Data.Product
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Binary hiding (_⇔_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
private
variable
a b ℓ : Level
A : Set a
B : Set b
R S T : REL A B ℓ
x y : A
data Connected {A : Set a} {B : Set b} (R : REL A B ℓ)
: REL (Maybe A) (Maybe B) (a ⊔ b ⊔ ℓ) where
just : R x y → Connected R (just x) (just y)
just-nothing : Connected R (just x) nothing
nothing-just : Connected R nothing (just y)
nothing : Connected R nothing nothing
drop-just : Connected R (just x) (just y) → R x y
drop-just (just p) = p
just-equivalence : R x y ⇔ Connected R (just x) (just y)
just-equivalence = equivalence just drop-just
refl : Reflexive R → Reflexive (Connected R)
refl R-refl {just _} = just R-refl
refl R-refl {nothing} = nothing
reflexive : _≡_ ⇒ R → _≡_ ⇒ Connected R
reflexive reflexive P.refl = refl (reflexive P.refl)
sym : Sym R S → Sym (Connected R) (Connected S)
sym R-sym (just p) = just (R-sym p)
sym R-sym nothing-just = just-nothing
sym R-sym just-nothing = nothing-just
sym R-sym nothing = nothing
connected? : Decidable R → Decidable (Connected R)
connected? R? (just x) (just y) = Dec.map just-equivalence (R? x y)
connected? R? (just x) nothing = yes just-nothing
connected? R? nothing (just y) = yes nothing-just
connected? R? nothing nothing = yes nothing