Source code on Github{-# OPTIONS --safe #-}
module Prelude.Bifunctor where
open import Prelude.Init; open SetAsType
private
variable
a a′ a″ b c : Level
A : Type a
A′ : Type a′
A″ : Type a″
B : A → Type b
B′ : A → Type b
C : A′ → Type c
record BifunctorI (F : (A : Type a) → (B : A → Type b) → Type (a ⊔ₗ b)) : Type (lsuc a ⊔ₗ lsuc b) where
field
bimap′ : (f : A → A′) → (∀ {x} → B x → C (f x)) → F A B → F A′ C
map₁′ : (A → A′) → F A (const A″) → F A′ (const A″)
map₁′ f = bimap′ f id
_<$>₁′_ = map₁′
map₂′ : (∀ {x} → B x → B′ x) → F A B → F A B′
map₂′ g = bimap′ id g
_<$>₂′_ = map₂′
open BifunctorI ⦃...⦄ public
instance
Bifunctor-Σ : BifunctorI {a}{b} Σ
Bifunctor-Σ .bimap′ = Product.map
record Bifunctor (F : Type a → Type b → Type (a ⊔ₗ b)) : Type (lsuc a ⊔ₗ lsuc b) where
field
bimap : ∀ {A A′ : Type a} {B B′ : Type b}
→ (A → A′) → (B → B′) → F A B → F A′ B′
map₁ : ∀ {A A′ : Type a} {B : Type b} → (A → A′) → F A B → F A′ B
map₁ f = bimap f id
_<$>₁_ = map₁
map₂ : ∀ {A : Type a} {B B′ : Type b} → (B → B′) → F A B → F A B′
map₂ g = bimap id g
_<$>₂_ = map₂
open Bifunctor ⦃...⦄ public
map₁₂ : ∀ {F : Type a → Type a → Type a} {A B : Type a} → ⦃ Bifunctor F ⦄ → (A → B) → F A A → F B B
map₁₂ f = bimap f f
_<$>₁₂_ = map₁₂
instance
Bifunctor-× : Bifunctor {a}{b} _×_
Bifunctor-× .bimap f g = Product.map f g
Bifunctor-⊎ : Bifunctor {a}{b} _⊎_
Bifunctor-⊎ .bimap = Sum.map