Source code on Github{-# OPTIONS --with-K #-}
open import Prelude.Init; open SetAsType
open Binary
open import Prelude.General
open import Prelude.Lift
open import Prelude.DecEq
open import Prelude.Decidable
open import Prelude.Irrelevance
open import Prelude.Ord.Core
open import Prelude.Ord.Dec
open import Prelude.Ord.Irrelevant
module Prelude.Ord.Product where
module _ {A : Type ℓ} {B : Type ℓ′} ⦃ _ : Ord A ⦄ ⦃ _ : Ord B ⦄ where
_≤×_ _<×_ : Rel (A × B) _
(a , b) ≤× (a′ , b′) = (a < a′) ⊎ (a ≡ a′ × b ≤ b′)
(a , b) <× (a′ , b′) = (a < a′) ⊎ (a ≡ a′ × b < b′)
private pattern ≪_ x = inj₁ x; pattern ≫_ x = inj₂ (refl , x)
instance
Ord-× : Ord (A × B)
Ord-× = record {_≤_ = _≤×_; _<_ = _<×_}
module _ ⦃ _ : DecEq A ⦄ ⦃ _ : DecOrd A ⦄ ⦃ _ : DecOrd B ⦄ where instance
DecOrd-× : DecOrd (A × B)
DecOrd-× = record {}
module _ ⦃ _ : OrdLaws A ⦄ ⦃ _ : OrdLaws B ⦄ where instance
OrdLaws-× : OrdLaws (A × B)
OrdLaws-× = λ where
.≤-refl → ≫ ≤-refl
.≤-trans → λ where
(≪ p) (≪ q) → ≪ <-trans p q
(≪ p) (≫ q) → ≪ p
(≫ p) (≪ q) → ≪ q
(≫ p) (≫ q) → ≫ ≤-trans p q
.≤-antisym → λ where
(≪ p) (≪ q) → ⊥-elim $ <-irrefl refl $ <-trans p q
(≪ p) (≫ _) → ⊥-elim $ <-irrefl refl p
(≫ _) (≪ q) → ⊥-elim $ <-irrefl refl q
(≫ p) (≫ q) → cong (_ ,_) (≤-antisym p q )
.≤-total → ≤×-total
.<-irrefl refl → λ where
(≪ p) → <-irrefl refl p
(≫ p) → <-irrefl refl p
.<-trans → λ where
(≪ p) (≪ q) → ≪ <-trans p q
(≪ p) (≫ q) → ≪ p
(≫ p) (≪ q) → ≪ q
(≫ p) (≫ q) → ≫ <-trans p q
.<-resp₂-≡ → (λ where refl → id) , (λ where refl → id)
.<-cmp → <×-cmp
.<⇒≤ → proj₁ ∘ <×⇒≤×∧≢
.<⇒≢ → proj₂ ∘ <×⇒≤×∧≢
.≤∧≢⇒< → ≤×∧≢⇒<×
where
≤×-total : Total _≤×_
≤×-total (a , b) (a′ , b′)
with <-cmp a a′
... | tri< a< _ _ = inj₁ (≪ a<)
... | tri> _ _ <a = inj₂ (≪ <a)
... | tri≈ _ refl _
with <-cmp b b′
... | tri< b< _ _ = inj₁ (≫ <⇒≤ b<)
... | tri> _ _ <b = inj₂ (≫ <⇒≤ <b)
... | tri≈ _ refl _ = ≪ (≫ ≤-refl)
<×-cmp : Trichotomous _≡_ _<×_
<×-cmp (a , b) (a′ , b′)
with <-cmp a a′
... | tri< a< a≢ ≮a
= tri< (≪ a<)
(λ where refl → a≢ refl)
(λ where (≪ <a) → ≮a <a; (≫ _) → ≮a a<)
... | tri> a≮ a≢ <a
= tri> (λ where (≪ a<) → a≮ a<; (≫ _) → a≮ <a)
(λ where refl → a≢ refl)
(≪ <a)
... | tri≈ a≮ refl ≮a
with <-cmp b b′
... | tri< b< b≢ ≮b
= tri< (≫ b<) (λ where refl → b≢ refl)
(λ where (≪ a<) → a≮ a<; (≫ <b) → ≮b <b)
... | tri> b≮ b≢ <b
= tri> (λ where (≪ a<) → a≮ a<; (≫ b<) → b≮ b<)
(λ where refl → b≢ refl) (≫ <b)
... | tri≈ b≮ refl ≮b
= tri≈ (λ where (≪ a<) → a≮ a<; (≫ b<) → b≮ b<)
refl
(λ where (≪ a<) → a≮ a<; (≫ b<) → b≮ b<)
<×⇒≤×∧≢ : _<×_ ⇒² _≤×_ ∩² _≢_
<×⇒≤×∧≢ = λ where
(≪ p) → (≪ p) , λ where refl → <⇒≢ p refl
(≫ p) → ≫ <⇒≤ p , λ where refl → <⇒≢ p refl
≤×∧≢⇒<× : _≤×_ ∩² _≢_ ⇒² _<×_
≤×∧≢⇒<× = λ where
(≪ p , ¬eq) → ≪ p
(≫ p , ¬eq) → ≫ ≤∧≢⇒< (p , λ where refl → ¬eq refl)
·-<× : ⦃ _ : ·² _<_ {A = A} ⦄ ⦃ _ : ·² _<_ {A = B} ⦄
→ ·² _<×_
·-<× .∀≡ (≪ p) (≪ q) rewrite ∀≡ p q = refl
·-<× .∀≡ (≪ p) (≫ q) = ⊥-elim $ <-irrefl refl p
·-<× .∀≡ (≫ p) (≪ q) = ⊥-elim $ <-irrefl refl q
·-<× .∀≡ (≫ p) (≫ q) rewrite ∀≡ p q = refl
·-≤× : ⦃ _ : ·² _≤_ {A = A} ⦄ ⦃ _ : ·² _<_ {A = A} ⦄
→ ⦃ _ : ·² _≤_ {A = B} ⦄ ⦃ _ : ·² _<_ {A = B} ⦄
→ ·² _≤×_
·-≤× .∀≡ (≪ p) (≪ q) rewrite ∀≡ p q = refl
·-≤× .∀≡ (≪ p) (≫ q) = ⊥-elim $ <-irrefl refl p
·-≤× .∀≡ (≫ p) (≪ q) = ⊥-elim $ <-irrefl refl q
·-≤× .∀≡ (≫ p) (≫ q) rewrite ∀≡ p q = refl
·Ord-× : ⦃ ·Ord A ⦄ → ⦃ ·Ord B ⦄ → ·Ord (A × B)
·Ord-× = mk·Ord
module _ {A : Type ℓ} {B : Type ℓ′} ⦃ _ : Ord⁺⁺ A ⦄ ⦃ _ : Ord⁺⁺ B ⦄ where instance
Ord⁺⁺-× : ⦃ DecEq A ⦄ → Ord⁺⁺ (A × B)
Ord⁺⁺-× = mkOrd⁺⁺