Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Reflection.Argument.Information where
open import Data.Product
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Reflection.Argument.Modality as Modality using (Modality)
open import Reflection.Argument.Visibility as Visibility using (Visibility)
private
variable
v v′ : Visibility
m m′ : Modality
open import Agda.Builtin.Reflection public using (ArgInfo)
open ArgInfo public
visibility : ArgInfo → Visibility
visibility (arg-info v _) = v
modality : ArgInfo → Modality
modality (arg-info _ m) = m
arg-info-injective₁ : arg-info v m ≡ arg-info v′ m′ → v ≡ v′
arg-info-injective₁ refl = refl
arg-info-injective₂ : arg-info v m ≡ arg-info v′ m′ → m ≡ m′
arg-info-injective₂ refl = refl
arg-info-injective : arg-info v m ≡ arg-info v′ m′ → v ≡ v′ × m ≡ m′
arg-info-injective = < arg-info-injective₁ , arg-info-injective₂ >
_≟_ : DecidableEquality ArgInfo
arg-info v m ≟ arg-info v′ m′ =
Dec.map′
(uncurry (cong₂ arg-info))
arg-info-injective
(v Visibility.≟ v′ ×-dec m Modality.≟ m′)