Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Relation.Unary.Sorted.TotalOrder.Properties where
open import Data.List.Base
open import Data.List.Relation.Unary.All using (All)
open import Data.List.Relation.Unary.AllPairs using (AllPairs)
open import Data.List.Relation.Unary.Linked as Linked
using (Linked; []; [-]; _∷_; _∷′_; head′; tail)
import Data.List.Relation.Unary.Linked.Properties as Linked
open import Data.List.Relation.Unary.Sorted.TotalOrder hiding (head)
open import Data.Maybe.Base using (just; nothing)
open import Data.Maybe.Relation.Binary.Connected using (Connected; just)
open import Data.Nat.Base using (ℕ; zero; suc; _<_; z≤n; s≤s)
open import Level using (Level)
open import Relation.Binary hiding (Decidable)
import Relation.Binary.Properties.TotalOrder as TotalOrderProperties
open import Relation.Unary using (Pred; Decidable)
open import Relation.Nullary using (yes; no)
private
variable
a b p ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
module _ (O : TotalOrder a ℓ₁ ℓ₂) where
open TotalOrder O
AllPairs⇒Sorted : ∀ {xs} → AllPairs _≤_ xs → Sorted O xs
AllPairs⇒Sorted = Linked.AllPairs⇒Linked
Sorted⇒AllPairs : ∀ {xs} → Sorted O xs → AllPairs _≤_ xs
Sorted⇒AllPairs = Linked.Linked⇒AllPairs trans
module _ (O₁ : TotalOrder a ℓ₁ ℓ₂) (O₂ : TotalOrder a ℓ₁ ℓ₂) where
private
module O₁ = TotalOrder O₁
module O₂ = TotalOrder O₂
map⁺ : ∀ {f xs} → f Preserves O₁._≤_ ⟶ O₂._≤_ →
Sorted O₁ xs → Sorted O₂ (map f xs)
map⁺ pres xs↗ = Linked.map⁺ (Linked.map pres xs↗)
map⁻ : ∀ {f xs} → (∀ {x y} → f x O₂.≤ f y → x O₁.≤ y) →
Sorted O₂ (map f xs) → Sorted O₁ xs
map⁻ pres fxs↗ = Linked.map pres (Linked.map⁻ fxs↗)
module _ (O : TotalOrder a ℓ₁ ℓ₂) where
open TotalOrder O
++⁺ : ∀ {xs ys} → Sorted O xs → Connected _≤_ (last xs) (head ys) →
Sorted O ys → Sorted O (xs ++ ys)
++⁺ = Linked.++⁺
module _ (O : TotalOrder a ℓ₁ ℓ₂) where
open TotalOrder O
applyUpTo⁺₁ : ∀ f n → (∀ {i} → suc i < n → f i ≤ f (suc i)) →
Sorted O (applyUpTo f n)
applyUpTo⁺₁ = Linked.applyUpTo⁺₁
applyUpTo⁺₂ : ∀ f n → (∀ i → f i ≤ f (suc i)) →
Sorted O (applyUpTo f n)
applyUpTo⁺₂ = Linked.applyUpTo⁺₂
module _ (O : TotalOrder a ℓ₁ ℓ₂) where
open TotalOrder O
applyDownFrom⁺₁ : ∀ f n → (∀ {i} → suc i < n → f (suc i) ≤ f i) →
Sorted O (applyDownFrom f n)
applyDownFrom⁺₁ = Linked.applyDownFrom⁺₁
applyDownFrom⁺₂ : ∀ f n → (∀ i → f (suc i) ≤ f i) →
Sorted O (applyDownFrom f n)
applyDownFrom⁺₂ = Linked.applyDownFrom⁺₂
module _ (DO : DecTotalOrder a ℓ₁ ℓ₂) where
open DecTotalOrder DO renaming (totalOrder to O)
open TotalOrderProperties O using (≰⇒≥)
private
merge-con : ∀ {v xs ys} →
Connected _≤_ (just v) (head xs) →
Connected _≤_ (just v) (head ys) →
Connected _≤_ (just v) (head (merge _≤?_ xs ys))
merge-con {xs = []} {[]} cxs cys = cys
merge-con {xs = []} {y ∷ ys} cxs cys = cys
merge-con {xs = x ∷ xs} {[]} cxs cys = cxs
merge-con {xs = x ∷ xs} {y ∷ ys} cxs cys with x ≤? y
... | yes x≤y = cxs
... | no x≰y = cys
merge⁺ : ∀ {xs ys} → Sorted O xs → Sorted O ys → Sorted O (merge _≤?_ xs ys)
merge⁺ {[]} {[]} rxs rys = []
merge⁺ {[]} {x ∷ ys} rxs rys = rys
merge⁺ {x ∷ xs} {[]} rxs rys = rxs
merge⁺ {x ∷ xs} {y ∷ ys} rxs rys with x ≤? y |
merge⁺ (Linked.tail rxs) rys | merge⁺ rxs (Linked.tail rys)
... | yes x≤y | rec | _ = merge-con (head′ rxs) (just x≤y) ∷′ rec
... | no x≰y | _ | rec = merge-con (just (≰⇒≥ x≰y)) (head′ rys) ∷′ rec
module _ (O : TotalOrder a ℓ₁ ℓ₂) {P : Pred _ p} (P? : Decidable P) where
open TotalOrder O
filter⁺ : ∀ {xs} → Sorted O xs → Sorted O (filter P? xs)
filter⁺ = Linked.filter⁺ P? trans